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Preface

There is an in�nite number of worlds, both like and unlike this world of ours.

Epicurus, Letter to Herodotus (341�270 BC)

There are countless suns and countless earths all rotating around their sun in

exactly the same way as the seven planets of our system. We see only the suns

because they are the largest bodies and are luminous, but their planets remain

invisible to us because they are smaller and non-luminous. The countless worlds

in the universe are no worse and no less inhabited than our Earth.

Giordano Bruno, De L'In�nito Universo E Mondi (1584)

I should not hesitate to stake my all on the truth of the proposition�if there

were any possibility of bringing it to the test of experience�that at least some

one of the planets which we see is inhabited. Hence I say that I have not merely

the opinion, but the strong belief that there are inhabitants in other worlds.

Immanuel Kant, The Critique of Pure Reason (1781)

It would indeed be rash to assume that nowhere else in the Universe has nature

repeated the strange experiment which she has performed on the Earth.

Arthur Eddington, Nature of the Physical World (1933)

There are hundreds of billions of galaxies in the observable Universe, with each galaxy
such as our own containing 1011 stars. Surrounded by this seemingly limitless ocean of
stars, mankind has long speculated about the existence of planetary systems other than
our own, and the possibility of development of life elsewhere in the Universe. We live in
a remarkable time, where human beings have �nally attained the possibility of �nding the
�rst real answers to some of these most meaningful questions.

Since the �rst discovery of an exoplanet1 by Mayor and Queloz in 1995, the hunt for
such bodies has gained much interest in the scienti�c community, to such a point that more
than 60 exoplanets have already been detected and con�rmed to date. Currently, about one
exoplanet is found every week. But this ground-based hunt for extra-solar planets does not
have the sensitivity required to detect planets similar to our Earth: all 60 exoplanets are as

1The neologism �exoplanet� refers to a planet orbiting around another star than our own.
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Preface vii

big as Jupiter, and generally orbiting very close to their parent star, so that their surface
temperature is quite high (900 K or hotter). These planets are nicknamed �Hot Jupiters�.
Moreover, the present detection techniques provide very little information about the planet
itself (essentially its mass and revolution period) because it is only detected through its
gravitational in�uence on its host star: present telescopes do not allow to directly see the
planet. This is going to change thanks to space interferometry, which is the main subject
of this work.

In the �rst chapter of this thesis, a brief introduction to the principles of interferometry
is given. After describing Young's experiment, which shows how two light beams interfere,
we recall the basic equations of interferometry by means of some analytical developments.
A short historical review of stellar interferometry is then given, followed with some practical
considerations, including the e�ect of the turbulent atmosphere on ground-based interfer-
ometers. The last paragraphs of that chapter put the emphasis on technical di�culties
faced by stellar interferometry, and show how these di�culties are or will be overcome.
The chapter is targeted at readers unfamiliar with stellar interferometry. It should help
understand the following chapters more easily, and is a necessary complement to chapter 5.

The second chapter �rst deals with the various techniques currently used for exoplanet
detection. Since planets are typically billions of times fainter than their host star, with an
angular separation of at most a few seconds of arc, direct detection is an extraordinarily
di�cult task. This is the reason why indirect detection methods, based on dynamical
perturbation of the star by the orbiting planet, on planetary transits and on gravitational
microlensing, have been developed. The second part of chapter 2 is dedicated to direct

detection methods, which will be available in a near- or mid-term future. Finally, basic
considerations on remote sensing of life are used to show why the mid-infrared range is the
most interesting for a mission dedicated to planet and life �nding.

The third chapter consists in a detailed presentation of the IRSI-Darwin2 mission
concept, with particular attention to the interferometric con�guration (or �aperture� con-
�guration). Darwin is a candidate Cornerstone to the Horizon 2000+ program of the
European Space Agency (ESA). It would consist of half-a-dozen small telescopes, each like
a small Hubble telescope, separated by about �fty meters, and sending their light to a
central station, in a technique known as nulling interferometry. We show how the Dar-
win concept has evolved since its �rst proposal in 1993, and how it will address the three
questions of detecting exoplanets, characterizing their habitability, and observing signposts
for the existence of life as we know it. A very important breakthrough for the Darwin
mission is the development of internal modulation, a technique for fast signal chopping
described in section 3.2.5. Some examples of con�gurations with internal modulation are
then presented, as well as the con�gurations proposed for the Terrestrial Planet Finder
(the NASA equivalent of Darwin). This chapter ends with a proof of the feasibility of the
Darwin mission, based on signal-to-noise calculations.

The intended contribution of this thesis to the Darwin mission consists of a systematic
study of possible aperture con�gurations with internal modulation. Chapter 4 is dedicated
to that study. For technological reasons, the telescopes forming the nulling interferometer

2Infra-Red Space Interferometer Darwin.
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are restricted to stand on a circle or on a common line. Even with this restriction, there
are countless possibilities for the Darwin aperture con�gurations. Their performances are
evaluated by obtaining analytical expressions for the transmission map and the modulation
e�ciency of each interferometer. A new way to modulate the signal, called inherent internal
modulation, is proposed in section 4.4. This new kind of internal modulation is especially
e�cient with linear arrays, because in that case it uses fewer detectors than classical internal
modulation, with the same performance. Criteria for the choice of an optimal con�guration
are discussed at the end of the chapter.

One of the key technology developments needed for Darwin is the design and test of
nulling interferometry. The installation of a nulling breadboard on ESO's VLT interfero-
meter not only could validate the technique of nulling interferometry but also could provide
much-needed scienti�c information about the prevalence of dust clouds in nearby planetary
systems. Chapter 5 deals with this possibility. After a brief description of zodiacal dust
clouds, an evaluation of three possible nulling con�gurations is undertaken, with the result
that a two-telescope interferometer is probably the most appropriate. The main technical
di�culties associated with ground-based nulling interferometry are then brie�y described,
as are other current projects.

Four appendices contain analytical calculations that are not critical for a good under-
standing of the work, but, on the other hand, are fundamental for the systematic study
of aperture con�gurations. These calculations are mainly based on the properties of linear
and nonlinear systems of equations, and can be skipped at �rst reading.

Olivier Absil
Liège, May 2001.



Notations and acronyms

Conventions

~A: vector
A: complex variable or function
A: complex conjugate of AeA: Fourier transform of A
[�]: to within an integer multiple of �

Units

arcsec: second of arc (' 4:85� 10�6 radian)
mas: milli-arcsec (10�3 arcsec)
�as: micro-arcsec (10�6 arcsec)
AU: Astronomical Unit (' 1:495� 108 km)
pc: parsec (' 3:08� 1014 km)
Jy: Jansky (10�26 W m�2 Hz�1)

Constants

MJ: Sun's mass (' 1:98� 1030 kg)
ML: Earth's mass (' 5:98� 1024 kg)
MJ : Jupiter's mass (' 1:9� 1027 kg)
G: Cavendish gravitational constant (' 6:67� 10�11 m3kg�1s�2)

Notations

M�, R�, L�: star's mass, radius and luminosity
Mp, Rp, Lp: exoplanets's mass, radius and luminosity
a: semi-major axis of the exo-system
P : orbital period of the exo-system
i: inclination of the exoplanet's orbital plane with respect to the plane

of the sky
B� , B�: surface brightness, respectively per frequency and per wavelength unit
F� , F�: �ux density, respectively per frequency and per wavelength unit
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~� = (�; �): angular coordinates of a source in the plane of the sky
~r: cartesian coordinates in the pupil plane
~�f : angular coordinates in the focal plane
R(�; �): interferometer response
~Lk = (Lk; Æk): polar coordinates of telescope k with respect to the origin of the frame

(generally taken as the center of the array)
Dk: diameter of telescope k
�k: phase shift applied to the beam from telescope k
ck: ck = Dk cos�k, amplitude of telescope k in a real entrance pupil
sk: sk = Dk sin�k, non-zero only when the entrance pupil is complex

Acronyms

AIC: Achromatic Interfero Coronagraph
ALMA: Atacama Large Millimeter Array
COBE: Cosmic Background Explorer
DAC: Degenerated Angel Cross
ESA: European Space Agency
ESO: European Southern Observatory
FTRC: Five Telescope Real Circle
GAC: Generalized Angel Cross
HST: Hubble Space Telescope
IR: Infrared
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IRSI-Darwin: Infra-Red Space Interferometer Darwin
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MMT: Multiple Mirror Telescope
NGST: Next Generation Space Telescope
OASES: Outpost for Analysis and Spectroscopy of Exo-Systems
OPD: Optical Path Di�erence
PSF: Point Spread Function
RLx(m1,: : : ,mn): Robin Laurance con�guration, where x is the number of sub-arrays,

n the number of telescopes and mi the relative telescope size.
rms: root mean square
SIM: Space Interferometry Mission
SIRTF: Space Infra-Red Telescope Facility
SNR: Signal-to-Noise Ratio
SOFIA: Stratospheric Observatory for Infrared Astronomy
STRC: Six Telescope Real Circle
TPF: Terrestrial Planet Finder
VLTI: Very Large Telescope Interferometer



Chapter 1

Principles of optical/IR interferometry

1.1 Coherence of light

The principles of interferometry are profoundly based on the theory of light coherence.
By re-visiting Young's experiment, we will introduce the concepts of temporal and spatial
coherence, as well as the basic equations of interferometry. This chapter is largely based on
Born and Wolf [14], Léna [33], Surdej [53] and on the course notes from the 1999 Michelson
Summer School [28].

1.1.1 Young's experiment

The earliest experimental setting for demonstrating the interference of light is due to Young.
Light from a monochromatic point source S falls on two pinholes S1 and S2 which are close
together in a screen A and equidistant from S (�gure 1.1). The pinholes act as secondary
monochromatic point sources which are in phase, and the beams from them are superposed
in the region beyond A. An interference pattern is formed on screen B placed at a distance
d from A.

�
� �

� �

�

�

�

�

�
�

�

Figure 1.1: Young's experiment: light from a monochromatic point source S is divided into
two spherical wavefronts by two pinholes S1 and S2, separated by a distance b called the
baseline. These two wavefronts create an interference pattern on screen B.

By expressing the optical path di�erence (OPD) for light reaching point P (with coordi-
nate x on screen B) from S1 and S2, and remembering that there are respectively intensity

1



Chapter 1. Principles of optical/IR interferometry 2

maxima and minima when the two waves are in phase or half a wavelength out of phase,
one �nds the following positions for intensity extrema:

xmax = m
d�0
b

or xmin = (2m+ 1)
d�0
2b

; jmj = 0; 1; 2; : : : ; (1.1)

where �0 is the wavelength and m the order of interference. The interference pattern in
the immediate vicinity of O thus consists of bright and dark bands called interference
fringes, equidistant and running at right angle to the line S1S2 joining the two sources.
The separation between adjacent bright fringes is d�0=b.

Now if the source is not perfectly monochromatic, it can be seen as a superposition of
mutually incoherent monochromatic components, each producing an interference pattern
with a fringe spacing proportional to its wavelength �. The central maxima of all the
monochromatic patterns, corresponding to equality of the paths from S1 and S2, coincide
on O, where a bright �white� fringe is observed, but elsewhere the patterns are mutually
displaced because their scale is proportional to �. As a result, the fringes are less distinct
than with monochromatic light, and the situation gets worse when the wavelength range
�� increases.

Another way to reduce the contrast between fringes has been discovered by Fizeau in
1868: the fringe contrast decreases when the angular diameter of the source S increases,
or when the baseline b between the two holes increases. Based on this property, the
angular distance � between two close unresolved stars can be determined in a (theoretically)
very simple way: when increasing the distance between the two holes, the fringe patterns
from the two stars progressively separate until the bright fringes from one pattern exactly
coincide with the dark fringes of the other (see �gure 1.2). At that very moment the two
stars are resolved, and their angular separation is given by � = �0=2b.

Figure 1.2: Interference fringes for a binary star. From left to right: the contrast between
bright and dark fringes progressively decreases as the baseline increases, until the moment
where it cancels and the two sources are resolved (ESO PR Photo 10e/01).

1.1.2 Complex degree of coherence and fringe visibility

Consider the wave �eld V(P; t) produced by an extended polychromatic source, and two
points P1 and P2 in the wave �eld. The observable intensity at these two points is
equal to the mean value of jV(Pj; t)j2. In addition to measuring the intensities I(Pj) =
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hV(Pj; t)V(Pj; t)i at each of these points, we may also determine experimentally the in-
terference e�ects arising from the superposition of the vibrations from these points by
repeating Young's experiment. By placing an opaque screen A across the �eld with pin-
holes at P1 and P2, the �eld distribution on a screen B placed some distance from A
reads

V(Q; t) = K1V(P1; t� t1) +K2V(P2; t� t2) , VQ(t) = K1V1(t) +K2V2(t� �) ;
(1.2)

with t1, t2 the times needed for light to travel from P1 or P2 to Q, and with � = t2 � t1,
assuming that the �eld is stationary. The pure imaginary1 factors K1 and K2 are inversely
proportional to the distances P1Q and P2Q, and also depend on the size of the openings
and on the geometry of the arrangement. The intensity at point Q then writes

I(Q) = jK1j2I1 + jK2j2I2 + 2jK1K2j <(�12(�)) ; (1.3)

where �12(�) = hV1(t)V2(t� �)i is the mutual coherence of the light vibrations at P1 and
P2, the vibrations at P2 being considered � seconds earlier than at P1. Normalizing this
function, we obtain the complex degree of coherence


12(�) =
�12(�)p

�11(0)
p

�22(0)
=

�12(�)p
I1
p
I2

(1.4)

which simultaneously describes the spatial and temporal coherence of the waves because it
correlates the �elds at two di�erent points of space and time.

Considering a quasi-monochromatic source (with bandwidth �� � �0), one de�nes the
coherence time of the source �c � 1=�� as the characteristic times separating two instants
at which the source electric �eld begins to be decorrelated. Now if � � �c, it can be shown
that


12(�) = j
12(�)j exp(i�12(�)� i2��0�) ' j
12(0)j exp(i�12(0)� i2��0�) ; (1.5)

so that the intensity at point Q writes2

I(Q) = I1(Q) + I2(Q) + 2
p
I1(Q)I2(Q)j
12(0)j cos(�12(0)� 2��0�) : (1.6)

Hence the visibility of the fringes at Q is

V(Q) = Imax � Imin
Imax + Imin

=
2
p
I1(Q)I2(Q)

I1(Q) + I2(Q)
j
12(0)j ; (1.7)

which reduces to V(Q) = j
12(0)j in the frequent case where the two beams are of equal
intensity. A direct measurement of j
12(0)j is thus possible by measuring the fringes vis-
ibility. Its value depends on the extension of the source and on the distance between P1

and P2, according to the van Cittert�Zernicke theorem, discussed in the following section.

1Since the secondary wavelets from P1 and P2 are out of phase with the primary wave by a quarter of
period, K1 and K2 are pure imaginary numbers (see [14]).

2The intensity Ij(Q) = jKj j
2Ij represents the intensity that would be measured at point Q if there was

a unique pinhole at the point Pj in the screen A, and thus no interference.
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1.1.3 The van Cittert�Zernicke theorem

In this section, we derive the fundamental theorem of interferometry, which connects the
complex degree of coherence 
12(�) to the intensity distribution of the source.

Let us re-write the expression of 
12(�) in the case where the extended source S is
divided into elements d�1, d�2, : : : centered on points S1, S2, : : : of small linear dimensions
compared to the mean wavelength �0. If Vm1(t) and Vm2(t) are the complex disturbances
at P1 and P2 due to the source element d�m, the total disturbances at these points are

V1(t) =
X
m

Vm1(t) ; V2(t) =
X
m

Vm2(t) : (1.8)

The mutual intensity thus reads

�12(0) = hV1(t)V2(t)i =
X
m

hVm1(t)Vm2(t)i+
X
m

X
n6=m

hVm1(t)Vn2(t)i : (1.9)

Now the light vibrations arising from di�erent elements of the source may be assumed to
be statistically independent (mutually incoherent), and of zero mean value so that

hVm1(t)Vn2(t)i = hVm1(t)ihVn2(t)i = 0 when m 6= n : (1.10)

If Rm1 and Rm2 are the distances of P1 and P2 from the source element d�m, then

Vmj(t) = Am(t� Rmj=c)
exp(i2��0(t�Rmj=c))

Rmj
; j = 1; 2 ; (1.11)

where Am is the amplitude of the radiation and c the speed of light. Hence

hVm1(t)Vm2(t)i = hAm(t)Am(t� (Rm2 �Rm1)=c)iexp(i2��0(Rm1 � Rm2)=c)

Rm1Rm2
: (1.12)

If the path di�erence Rm2�Rm1 is small compared to the coherence length lc = c�c of light
we may neglect the retardation (Rm2�Rm1)=c in the argument of Am, and the expression
for the mutual intensity reads

�12(0) '
X
m

hAm(t)Am(t)iexp(i2��0(Rm1 �Rm2)=c)

Rm1Rm2
: (1.13)

Finally, denoting by I(S) the intensity per unit area of the source, so that I(Sm)d�m =
hAm(t)Am(t)i, the complex degree of coherence writes


12(0) =
1p
I1I2

Z
�

I(S)
exp

�
i2�R1�R2

�0

�
R1R2

dS ; (1.14)

where R1 and R2 denote the distances between a typical source point S and points P1

and P2 (see �gure 1.3), and I1, I2 the intensities at P1 and P2. This is the mathematical
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expression of the van Cittert�Zernicke theorem, which can be simpli�ed in the important
case where the distance between the source S and the screen A is very large (see [14]):


12(0; x; y) = ei 
R R

�
I(�; �) exp(�i2�(x� + y�)=�)d�d�R R

�
I(�; �)d�d�

; (1.15)

where x = x1�x2 and y = y1�y2 are the coordinate di�erences between points P1 and P2,
and (�; �) the coordinates of a typical source point S (see �gure 1.3). In this expression, the
quantity  represents the phase di�erence 2�(OP1 � OP2)=�0. It is further conventional
to de�ne the spatial frequencies u = x=� and v = y=�.

�

�

� �

�

� �

� �

�

��

�

	 �

	 �

	

Figure 1.3: Illustrating the van Cittert�Zernicke theorem.

In short, the van Cittert�Zernicke theorem states that the complex degree of mutual
coherence (and therefore the fringe visibility) is essentially the normalized two-dimensional
Fourier transform of the source intensity. We will see in section 1.2.4 how this theorem
can be used in order to image an unresolved source with an interferometer. But �rst, let
us brie�y describe how a stellar interferometer works.

1.2 Stellar interferometry

1.2.1 From Young to Fizeau

As already mentioned in section 1.1, Fizeau proposed in 1868 a way to determine the
angular size of an unresolved star3, by progressively increasing the distance b between two
holes until the visibility of the fringes reaches a minimum. An experiment based on this
property was carried out by Stephan in 1873, who placed an opaque screen with two holes
in front of an 80 cm telescope (�gure 1.4). With this 65 cm baseline, he did not observe
visibility loss for any target star, and concluded that stellar angular diameters are much
smaller than 0.16 arcsec.

A more general Fizeau con�guration is shown on the right-hand side of �gure 1.4. It
consists in two mirrors lying on a virtual parabola (dotted curve), so that the two parallel

3or equivalently the angular separation between the two components of an unresolved binary star
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�

� � � � � 	 
 � � � �

Figure 1.4: Left: Optical layout of a rudimentary Fizeau interferometer, as used by Stephan
(1873). Right: Generalization of the Fizeau con�guration to a two-telescope interferometer.

light beams are focused at a common point. Secondary mirrors are added in order to
improve the compactness of the system. Interferences between the two beams at the focus
result as usual in a fringe pattern. Long baselines are still di�cult to achieve on ground with
such interferometers because the two mirrors have to be mounted on a common support,
just as if it was a single mirror. In addition, the structure has to be rotated as a whole in
order to point at a non-zenith star.

1.2.2 The Michelson stellar interferometer

In order to increase the interferometer baseline, Michelson installed a six-meter metal beam
with small mirrors at each end across the aperture of the 100-inch (2.5-meter) Hooker
telescope at Mount Wilson in California, then the biggest in the world (�gure 1.5). With
this interferometer, Michelson succeeded in measuring the angular diameter of half a dozen
of red giants, such as Betelgeuse (0.047 arcsec). Anderson repeated the same experiment
in order to resolve very tight binaries such as Capella.

Figure 1.5: Left: Optical layout of a rudimentary Michelson stellar interferometer, as used
by Michelson (1919). Right: Photograph of the 2.5-m Hooker telescope surmounted by a
6-m metal beam. Taken from the Space Interferometry Mission (SIM) web-site.
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In the 1930s Michelson's collaborator F. Pease attempted interferometry with mirrors
on a 15-meter mount, but he failed, probably because the mount was not mechanically
sti� enough. Indeed the optical path di�erence between the two interfering beams must
be much smaller than the coherence length of the wave (� 1 �m in the optical range) in
order to record the fringes, and a 15-m beam does not insure such an accuracy.

The next step was naturally to abandon single aperture interferometers, and thus to
use two independent telescopes which could be separated by any chosen distance. This
step was �nally made by Labeyrie in 1973. The optical layout of a �modern� Michelson
interferometer is shown in �gure 1.6. The two afocal beams coming from the telescopes are
recombined in a common focal plane, and the fringe spacing is determined by the distance
d between the two parallel beams at recombination.

� �


 � � � � 	 � � � �

� � � � � 	 
 � � � �

� 


�

�

Figure 1.6: Optical layout of a modern Michelson interferometer. A delay line introduces
a variable optical delay in order to compensate for the �L optical path di�erence between
the two samples of the incoming wavefront. The distance d between the two parallel beams
at recombination determines the fringe spacing in the focal plane, where the fringe visibility
j
12(0)j is measured.

1.2.3 Image-plane and pupil-plane combination

There are two fundamentally di�erent types of beam-combination at the back end of an
interferometer, and all ground- and space-based interferometers use one or the other of
these methods. In principle, with an ideal instrument, the best achievable signal-to-noise
ratios from both methods should be identical.

Image-plane interferometry

It is the method in which each beam is focused to make an image of the sky, and the images
are superposed in such a way that interferences fringes form across the combined image.
This is also called multi-axial interferometry, or sometimes �Fizeau interferometry�, not to
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be confused with the �Fizeau con�guration� shown in �gure 1.4. Image-plane combination
has been implicitly assumed until now (see for example �gure 1.6 where a lens is used to
focus the two beams on a detector). With the notations of �gure 1.6, the fringe intensity
as a function of angular position � in the focal plane is given by

I(�) = 2Itel(�)(1 + V cos(2�(�d+�z)=�)) ; (1.16)

where Itel is the shape of the di�raction envelope, V the visibility of the star, �d the fringe
modulation term and �z the residual OPD, which determines the fringe position. This
residual OPD depends on the baseline b and on the line-of-sight. When the delay line
is adjusted to give an OPD of �z = 0, then the peak intensity of the fringe pattern is
centered in the di�raction envelope (Airy pattern) of the two beams. If the delay line is
moved o� the zero OPD position, the envelope will stay �xed but the fringes will move
across the envelope.

Pupil-plane interferometry

It is the method in which parallel beams are superposed, using a half-silvered mirror
or equivalent, and the two resulting output beams are each focused on single detector
pixels (�gure 1.7). This is also called co-axial interferometry, or sometimes �Michelson
interferometry�, after the eponym's original 1893 interferometer4, which showed that the
speed of light is independent of the observer velocity. In pupil-plane interferometry, the
combining beams are completely overlapped, so the combining baseline is zero (d = 0) and
the interfringe distance in�nite.

� � � � 	 � � � � � � � 
 � 	 � � � � � 	 � � � � � � � 
 � 	 �


 � � � � 	 � � � �

� � � 
 � � 	 �

� � � 
 � � 	 �

Figure 1.7: Pupil plane combination schematic, showing a half-silvered beam-combiner
plate and zero distance between combining beams.

Since a symmetric beam-splitter has the property5 that the phase di�erence between
transmitted and re�ected beams is exactly �=2, the phase di�erence between the combined
beams is 2��z=�� �=2, so that the fringe intensity is modulated by a � sin term instead
of a cos:

I(t) = 2Itel(1� V sin(2��z(t)=�)) : (1.17)

Here we have integrated over an angle in the focal plane so that Itel =
R
Itel(�)d�, and

we have explicitly assumed that the phase di�erence is time-modulated rather than being
spatially modulated as in the image-plane case.

4not to be confused with his 1919 stellar interferometer
5See Lawson [28], chap. 3, for an analytical proof.
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1.2.4 Principles of aperture synthesis

An interferometer is not an imager in and of itself: it only produces fringes, which give
information on the object at a single spatial frequency determined by the baseline. But
in principle, one may completely and unambiguously reconstruct an astronomical scene at
least up to the limiting b=� frequency by using aperture synthesis techniques developed
by radio astronomers to systematically measure in time all the di�erent fringe patterns
obtained on the source with a large number of di�erent baseline lengths and orientations.

In practice, a set of discrete interferometer baseline ~bi = (xi; yi) yields a set of discrete
visibility measurements V(ui; vi). This discrete visibility �eld can then be inverted by
means of a discrete Fourier transform operation to obtain a bandwidth-limited estimate of
the parent brightness distribution. The accuracy of the synthesized image is naturally a
function of the coverage of the (u; v) plane. However in order to properly image a source
in two dimensions it is necessary to accurately measure not only the contrast V(u; v) =
j
12(0; u; v)j of the fringe packet but also its precise position or phase with respect to some
reference point. This is much harder to accomplish accurately due to the randomly varying
nature of some sources of OPD in an interferometer. These sources are brie�y discussed in
section 1.3.2.

1.3 Practical limitations to optical/IR interferometry

A �rst di�culty that faces practical application of interferometry is related to the inherent
nature of the technique that has to rely, as was already apparent in �gure 1.2, on the
measurement of the visibility of a fringe packet where it is least detectable, namely where
it disappears! For complex sources of any type, the visibility is low by de�nition if the
interferometer is resolving the object at all. It can be shown, in fact, that the accuracy with
which an interferometric measurement can be made depends on the product NV2 where N
is number of photons collected by an individual telescope in the array and V is the measured
visibility. This implies that interferometry becomes increasingly ine�cient as the source
is resolved. Fortunately there are several ways around this particular problem, such as
wavelength bootstrapping, baseline bootstrapping or guide star methods (see Lawson [28],
chap. 14).

Figure 1.8: Fringe visibility vs. baseline. Measurements of low visibilities are necessary
in order to characterize the source, but unfortunately these measurements are the less
accurate.
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1.3.1 Visibility loss e�ects

High-quality measurements require that the observer minimize and calibrate the instru-
mental losses of visibility. Five main visibility loss e�ects are discussed by Traub in [28],
and are brie�y summarized hereafter.

� Spectral bandpass. All stellar measurements use a �nite range of wavelengths. Any
fringe packet, whether it is displayed spatially or temporally, will su�er a reduction
in modulation amplitude at the edges of the packet, where the di�erent wavelengths
will produce opposing peaks and valleys. It can be shown that the number of fringes
between envelope zero-crossings in a �nite-bandpass wave packet is N = 2�=��.

� Wavefront tilt. If two wavefronts of size D are tilted by an angle �, then the interfer-
ence pattern will be smeared and the visibility reduced. For a two-dimensional circu-
lar aperture of diameterD, the visibility reduction is smaller than 10% if � < 0:3�=D.

� Intensity mismatch. If the relay optics fail to perfectly overlap the beams from each
telescope, or if the beam-combiner has unequal re�ection and transmission factors,
or if the combined beams come from di�erent diameter telescopes and therefore have
di�erent intensities in the overlap region, then we will have a reduction in visibility
from any of these factors. This is a relatively tolerant e�ect.

� Optical surface �gure error. If the combining wavefronts each have a rms perturba-
tion of Æ with respect to a perfect wavefront, and if the perturbations are randomly
distributed across the wavefront, and uncorrelated between the two wavefronts, then
the fringe visibility will be degraded by a factor exp(�(2�Æ=�)2). This is a signi�cant
loss, especially when there is a large number of re�ections: the cumulative e�ect of
even rather good optical surfaces can strongly a�ect an interferometer.

� Polarization e�ects. The electric vector components respectively perpendicular (s)
and parallel (p) to the plane of incidence to a �at mirror generally experience two
di�erent phase shifts at re�ection. If an interferometer can be built so that the
re�ections in each arm follow the same sequence of changes in direction, and if the
corresponding mirrors at each re�ection are of the same type, then both beams will
experience the same phase shifts, and the respective s and p components will combine
independently in the focal plane and produce identical fringe packets. However if the
sequence of re�ections is di�erent, s � p di�erences may occur. If the s � p shift
between the two beams is �sp, the interferogram will have its visibility reduced by
j cos(�sp=2)j.

1.3.2 Observing through the turbulent atmosphere

Atmospheric turbulence is a major contributor to the di�culty of ground-based interfer-
ometry: atmospheric �uctuations cause visibility losses which can be more troublesome
than instrumental losses because potentially they are larger in magnitude and variable in
time.
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Wavefront distortion

Inhomogeneities in the atmosphere's refractive index introduce rapidly varying random
delays in the beam arrival times resulting in random motions of the fringe pattern with
time. These are di�cult to compensate as the atmospheric coherence time6 is typically
of order 5-20 msec in the optical (see Paresce [45]). In the infrared, these constraints are
signi�cantly relaxed, which explains why most of the new large interferometers have chosen
this band.

�
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Figure 1.9: Wavefront distortion induced by atmospheric turbulence (from Paresce [45]).

The correction for this e�ect depends on the size of the individual telescopes and the
wavelength band of operation. To understand this, consider the shape of the wavefront
reaching the array as shown in �gure 1.9. Above the atmosphere, the wavefront is perfectly
�at as in the ideal case considered so far but, on the ground, the wavefront is distorted by
the turbulent air that impresses on it corrugations with typical dimensions of a few cen-
timeters in the optical up to several meters in the mid-IR. Thus, if the telescope apertures
T1 and T2 are smaller than the size of the corrugations, they select small, relatively �at
areas of the wavefront and one has only to correct for the slightly di�erent orientations
(tip/tilt) of the two wave portions with a fast steering mirror to obtain reasonably stable
images that can be properly superimposed.

Correction of the wavefront

� Adaptive optics. For larger telescopes, the mirrors accept several wavefront corru-
gations simultaneously, producing a combined image containing many speckles on
each of which is superimposed an interference pattern. Uncorrected, this residual
wavefront distortion would severely limit the usefulness of large telescopes in an in-
terferometric array and, therefore, the limiting sensitivity of these devices. Higher
order adaptive optics compensation with deformable mirrors on each large telescope
is the only way out of this dilemma.

6Characteristic time during which the phase shift induced by the atmospheric refraction index inhomo-
geneities may be considered as constant.
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� Fiber optics. Single-mode �ber optics may be used within an interferometer (a) to
essentially select the plane-wave part of a wavefront, (b) to split a guided wave
into desired intensity ratio, and (c) to combine two guided waves. The advantage of
single-mode �bers is that when only the plane-wave part of the wavefront is used, the
�uctuations in visibility due to random warping of the wavefront (due to atmospheric
�uctuations as well as optical surface corrugations) are dramatically reduced.

� Fringe tracking. Even with these corrections, the fringes would still move, however,
due to the mean delay in the arrival times of the distorted waves (piston error shown
in �gure 1.9). This e�ect is usually partly compensated by using a fringe tracker that
detects and follows the instantaneous position of the fringes in real time and feeds
this information back to a fast optical compensator to �freeze� the fringe motion.
This allows the device to integrate in time and signi�cantly increases measurement
precision. To work properly, however, the fringe tracker needs a relatively bright
compact source, whose fringes can easily be detected above the instrumental noise.

� Phase determination. In principle, were one able to carry out all the corrections
just described in a perfect manner, a pair of movable telescopes de�ning a single
baseline of varying length and whose projection on the sky rotated in response to
Earth's diurnal motion would be su�cient for imaging even a complex but relatively
bright source by precisely measuring visibilities and phases for each baseline one
after the other. Unfortunately, the atmospherically induced delay varies randomly
with the location and spacing of the apertures preventing a determination of the true
phase relations between the various sets of measurements. Two ways to overcome this
problem have recently been devised. The �rst relies on a remarkable additive property
(called �phase closure�) of the interferometer output phases if three or more baselines
are simultaneously used: the phase addition of the interferometric signals cancels
the atmospherically induced phase shifts. In the second technique (called �phase-
referencing�), the phase information from a reference object is used to determine the
atmospheric phase, and correct the phase of the target source accordingly. The two
objects must be su�ciently close together in the sky so that their beams traverse the
same patch of atmosphere above the array.



Chapter 2

Detection of extra-solar planets

2.1 Context

In this section, a review of the techniques used to detect exoplanets is presented. Particular
attention is given to Earth-like habitable planets, which are of main interest for ESA's
IRSI-Darwin mission. In the following discussions, habitable (or �terrestrial�) planets are
de�ned as planets with a mass in the range 0:5�10ML, leading to a radius in the interval
0:8 � 2:2RL, and at surface temperature (� 300 K) which allows the presence of liquid
water.

Detecting and observing exoplanets is a rather tedious job, because of the two major
di�culties explained below.

2.1.1 Dynamical range

The �rst di�culty is the huge contrast between the star and the planet. Indeed, in the visi-
ble and near-infrared range (0.4 to 3 �m), the planet almost only re�ects the light emitted
by the star, and the brightness ratio is of order 5 � 109 for an Earth-like planet around
a Sun-like star. The contrast is more favorable in the mid-infrared, where the intrinsic
thermal emission of the planet is maximal (see �gure 2.1). In the following discussions,
we will assume a temperature of �300 K for Earth-like exoplanets, giving a brightness
ratio of about 107 between 7 and 20 �m. The magnitudes m and �uxes F� at 10 �m for
a Sun-Earth system at 10 pc are of mp ' 20:7 and F�;p ' 0:23 �Jy for the planet and of
m� ' 3:6 and F�;� ' 1:6 Jy for the star (values from [18]).

2.1.2 Angular resolution

The second di�culty is that the angular separation between a planet and its star is typically
of the order of a fraction of an arcsec. Earth-like exoplanets are supposed to be in the
habitable zone surrounding the star, at about 1 AU from a G-type star1. For example,

1The preliminary target list for Darwin ranges from F-type stars (habitable zone between 1 and 3
AU for a 1:5MJ star) to M-type stars (habitable zone between 0.1 and 0.3 AU for a 0:3MJ star). The
greenhouse e�ect of CO2 clouds could push the outer boundary a little farther.

13
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Figure 2.1: Fluxes of the Earth and the Sun as seen from 4 pc, from Angel et al. [2].

a terrestrial planet orbiting a solar-type star at 10 pc from the observer is seen with an
angular separation of 100 mas. High angular resolution can be achieved with interferometry,
as demonstrated in the �rst chapter: a 100 mas angular resolution is reached with a 20 m
baseline at 10 �m. On the other hand a single aperture of about 1 m in diameter would
be su�cient in the visible range to achieve such a resolution.

2.2 Indirect detection

The two di�culties mentioned above have forced the astronomers to search for exoplanets
in a di�erent way than direct imaging. Indirect methods are based on the in�uence of the
planet on the observables of the stars. Thus, in this section, we only observe the star, and
not the planet. It is the reason why those methods are called �indirect�.

In the following discussions, we will adopt the notations of Perryman [46], who gives
an excellent review of extra-solar planet detection. Parameters used are mass M , radius
R, and luminosity L, with subscripts � and p referring to star and planet respectively.
Systems are characterized by their orbital period P , semi-major axis a of the planet's
orbit, eccentricity e, inclination i of the orbital plane with respect to the plane of the sky
(i = 0Æ face-on, i = 90Æ edge-on), and distance d from our Solar System. Unless explicitly
noted, we will assume a single planet orbiting the star.

2.2.1 Radial velocity

This method is the one that �rst allowed secure detection of planets, by Mayor and
Queloz [36], around 51 Peg. Since 1995, more than 60 planets have been detected with
radial velocity measurements.
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Principle

The gravitational pull from a planet on its host star can be detected by precise measure-
ments of the radial velocity of the star by means of spectroscopy, since the star wobble
induces a periodic Doppler shift on the stellar spectrum. The third Kepler law

a3 =
G

4�2
P 2(M� +Mp) ' G

4�2
P 2M� ; (2.1)

where G is the gravitational constant, must be restated in our case because we only
observe the star, orbiting around the system's barycenter (Kepler used to watch the
planets, orbiting a �xed star). Replacing G(M� +Mp) by the so-called �mass function�
� = GM3

p=(M� +Mp)
2 gives a relation between the masses, the orbital period and the

maximum radial velocity2 vmax = 2�a sin i=P :

(Mp sin i)
3

(M� +Mp)2
=
v3maxP

2�G
; (2.2)

which is only valid for small eccentricities. For example, measurements of vmax (59 m/s)
and P (4.23 days) for 51 Peg (�gure 2.2) lead toMp sin i ' (1:36�1020M2

� )
1=3, with a good

approximation since e = 0:01 (quasi-circular orbit). As the sin i factor is a priori unknown,
the mass of the planet remains undetermined. In fact, the radial velocity technique only
allows a minimum mass determination, obtained for sin i = 1 (minimum mass of 0.5 MJ

for 51 Peg's companion). Note that orbital systems seen face on (sin i = 0) result in no
measurable radial velocity perturbation.

Figure 2.2: Radial velocity versus orbital phase for 51 Peg (Mayor and Queloz [36]).

2Writing so, we assume a quasi-circular orbit, which seems to be a quite frequent case.
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In the more general case of a planetary orbit with non-zero eccentricity, the velocity
amplitude vmax is given by

vmax =

�
2�G

P

�1=3
Mp sin i

(M� +Mp)2=3
1

(1� e)1=2
; (2.3)

which reduces to (2.2) for e = 0. This equation shows that radial velocity measurements
favor the detection of systems with massive planets and small periods P (and hence small
semi-major axes a). Velocity variations do not have a nice sinusoidal shape in this more
general case.

Limitations

Detectability depends on the number of orbital cycles observed and on the number of
observations per cycle. If many cycles are observed (possible when P is small), Fourier
techniques allow measurements of velocities comparable to the Doppler errors. On the other
hand, if the planetary period is much larger than the observing time, secure detection is
only possible for amplitudes at least 4 times larger than the errors. The current precision
reaches about 3 m/s, and a projected precision of 1 m/s is under development, for example
with the HARPS instrument at La Silla (Chile), which will achieve a long-term precision
of 1 m/s for di�erential radial velocity (not before fall 2002).

Moreover, the Doppler technique is intrinsically limited to around 1 m/s because of the
e�ect of star spots and convective inhomogeneities, which create a proper velocity �eld on
the stellar surface. In contrast, the motion of the Sun caused by the Earth has a semi-
amplitude of 0.1 m/s, and therefore detection of Earth-like exoplanets is de�nitely not
achievable with radial velocities. The minimum detectable mass is about 10 ML/sin i for
a planet at 1 AU from a one solar-mass star.

Other limitations are signal-to-noise considerations, which limit observations to the
brightest stars (typically V < 8 at the moment), and also the sin i factor, which could
be estimated with other techniques, such as photometric transits, or constrained by other
physical arguments.

2.2.2 Astrometric position

Principle

The gravitational signature of a planet on its host star can also be detected perpendicularly
to the line-of-sight by using astrometric measurements. The path of a star orbiting a star-
planet barycenter appears as an ellipse with semi-major axis � given by:

� =
Mp

M�
� a
d

(2.4)

where � is in arcsec when the planetary semi-major axis a is in AU and d in parsec
(Perryman [46]). Precise astrometric measurements of �, achieved with di�erential methods
on ground based interferometers, and combined with an estimation of a by means of the
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period, directly give us the mass of the planet without the sin i undetermination, if the
star's mass can be estimated from its spectral type and d from the star's parallax motion.
Astrometric measurements can also provide orbital constraints on sin i. For multi-planet
systems, the relative orbital inclination can be determined.

Seen from a distance of 10 pc, the Sun would oscillate with a typical relative displace-
ment of 1 mas, principally due to Jupiter (�gure 2.3). The Earth-induced displacement
would only be 0.3 �as. The astrometric method privileges high masses, as radial velocity,
but is more sensitive to large semi-major axes (i.e., long orbital periods).

Figure 2.3: The wobble of the Sun's projected position due to the in�uence of all planets
in the Solar System as it would appear from 10 pc (axes labeled in arcsec). Taken from
the ExNPS Road Map web-site.

A 100 �as precision is currently achieved at radio and optical wavelengths, respectively
with very long baseline interferometry (VLBI) and with the Palomar Testbed Interfe-
rometer, but no planet detections have been con�rmed yet using this method3. The VLT
and Keck interferometers are designed to achieve 10 �as precision. This is not enough for
habitable planet search.

Limitations

Due to phase �uctuations of Earth's atmosphere, ground based astrometric measurements
are limited to a maximal precision of about 10 �as. This high precision is only possible with
very small �elds of view (typically some tens of arcsec), where the atmosphere becomes
essentially common mode4. If one wishes to make astrometric measurements with an
accuracy signi�cantly better than 10 �as (necessary for Earth-like planet detection), the

3From the Allegheny Observatory astrometric work done by George Gatewood, it appears that there
are possibly two �classical jovians� orbiting Lalande 21185. These planets will hopefully hold up as the
�rst con�rmed astrometric detection of a planetary system.

4Atmospheric turbulence causes the position of a star to �uctuate with time. But if two stars are
su�ciently close together in the sky, the motion of the two stars will be almost identical because the light
from the two stars traverse almost identical paths through the atmosphere.
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only solution is to go to space. For the planned Space Interferometry Mission (SIM),
which will measure angles as small as 2 �as, a minimum planet of mass of 6.6 ML could
be detected in a 1 year orbit around a 1 MJ star that is 10 pc from the Earth.

The ultimate limit to Earth-like planet detection from space is once again related to
the non-uniformity of illumination over the disk of the star. Some sunspots have areas up
to 1% of the area of the Sun and so can cause the apparent center of light to move by as
much as 0.5% of the stellar diameter, whereas the Earth only induces a wobble with an
amplitude of 0.03% of the stellar diameter (Woolf and Angel [60]). Young stars are even
more active, with spots as large as 10% of the stellar disk. Detection of Earth-like planets
is therefore not achievable with astrometric measurements (unless the star is very quiet).

Generalization

In the case of �hot Jupiters�, the planet light can be �indirectly� detected by measuring
the star-planet photocenter displacement when changing the observation wavelength (the
planet being more luminous in the mid-IR range). The Keck interferometer, for instance,
will perform two-color phase reference interferometry with the capability to detect Jupiter
sized planets at a close separation of 0.15 AU to parent stars at a distance of 10 pc.

2.2.3 Photometric transits

Principle

For planetary systems oriented by chance with their orbital plane including the line-of-sight
to the observer, occultations will reveal the presence of planets. The probability to detect
a transit depends on the orbital system orientation, the orbital distance and the stellar
diameter. To detect an occultation, the orbital inclination i must satisfy the following
relation:

cos i <
R�
a
; (2.5)

which gives a probability p ' R�=a to observe the transit for a randomly oriented system
(p ' 0:005 for a Sun-Earth system). Under the assumption of uniform surface brightness
for the star5, the luminosity drop �L produced by an object along the line-of-sight is given
by the surface ratio

�L

L�
=

�
Rp

R�

�2

; (2.6)

and, if Æ is the latitude of the transit on the stellar disk, the duration of the transit reads

DT =
P

�

�
R� cos Æ +Rp

a

�
: (2.7)

5Strictly speaking, the e�ect includes a dependence on the local surface brightness of the stellar disk,
which varies with radius due to limb darkening.
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For Jupiter-like and Earth-like planets, the relative luminosity drop is respectively 10�2

and 8:4 � 10�5, while the transit duration equals 25 hours and 13 hours. The highest
sensitivity will be for larger planets in closer orbits (as for radial velocity).

Photometric transit is a very simple method (it only requires a precise photometer),
which provides very valuable information on the orbital system: from the luminosity drop
and an estimation of the star's radius (e.g. from spectral classi�cation), we can infer the
radius of the planet. From the periodicity of the transits, we can deduce the semi-major
axis by means of Kepler's third law. Moreover, from the duration of the transit, we can
estimate the latitude Æ, and hence the orbital inclination from cos i = (R� sin Æ)=a.

Recently, a �rst event has been detected by Charbonneau et al. [17], who used the
complementarity between photometric transits and radial velocity. As shown above, the
radial velocity technique is more sensitive to large sin i, and is susceptible to detect edge-on
planetary systems. Charbonneau has observed two transits on star HD 209458, in perfect
agreement with radial velocity observations (�gure 2.4).

Figure 2.4: Photometric variations of HD 209458 due to a planetary transit (from [17]).

Limitations

The principal disadvantage of the method is the very weak probability of such events (the
inclination i must be very close to 90Æ). To overcome this limitation, we can make a
pre-selection of target stars whose planetary companion is likely to have its orbital plane
perpendicular to the plane of the sky. Another solution is to perform photometric surveys
on large populations of stars, as will be made with COROT or Eddington.

Ground-based photometry is limited to a 0.1% precision due to atmospheric extinction,
and to about 0.01% by scintillation. So, ground-based detection of Earth-like planets could
only be possible on the very best astronomical sites. Even in those sites, long uninterrupted
observations (& 13 h) are not possible. Dedicated spacecraft missions are needed to avoid
those limitations. COROT (planned for launch in 2004), and later Eddington, will perform
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photometric surveys on a large population of stars with high accuracy over large �elds of
view (typically 6 square degrees). A photometric precision of 10�6 will be reached, allowing
detection of Earth-like extra-solar planets.

Just as for the previous techniques, the fundamental limitation comes from stellar vari-
ability. Intrinsic stellar variations, �ares, sunspots, etc. could cause photometric variations
of the same order as planetary transits in the case of Earth-like planets. Besides those
limitations, the method is presently considered as one of the most promising means of
detecting planets with masses signi�cantly smaller than that of Jupiter.

Generalization

For giant planets very close to their host star, an occultation is not needed to observe
luminosity variations. The re�ected light intensity Lp / a�2R2

pL� can indeed create a
detectable modulation of the total received light, even if the planet cannot be imaged as
such. This may also occur if the orbital plane is somewhat inclined to the line-of-sight (see
Perryman [46]). Such measurements would enable an evaluation of the planet albedo.

2.2.4 Gravitational microlensing

Principle

Gravitational lensing is the focusing and hence ampli�cation of light rays from a distant
source by an intervening object. This e�ect has �rst been predicted by Einstein in 1912.
The relative motion between the background source, the intervening lens and the observer
will lead to an apparent brightening and subsequent dimming of the resulting image, which
may occur over time scales of hours and upwards. One speaks of �microlensing� e�ect when
the multiplicity of the subsequent image is not resolved. This happens when the de�ector's
mass is too small, so that the angular deviation of the light is much smaller than the
angular size of the telescope's di�raction pattern.

Events are characterized in terms of the Einstein ring radius

RE =

�
4GML

c2
(DS �DL)DL

DS

�1=2

; (2.8)

whereML is the mass of the lensing object, DL and DS the distances to the lens and to the
source. The Einstein angle is then de�ned as �E = RE=DS, and microlensing magni�cation
as a function of time reads (see Perryman [46])

A(t) =
u2(t) + 2

u(t)
p
u2(t) + 4

; (2.9)

where u(t) = �S=�E is the angular distance between the de�ector and the source in units of
the Einstein angle. For a single lensing star, the light curve is symmetrical, and centered
on the star position. An in�nite ampli�cation only arises when the lens and the source are
perfectly aligned, and when the source is in�nitesimal. The caustic for a single lens is the
single point behind the lens, and the subsequent image is the Einstein ring.



Chapter 2. Detection of extra-solar planets 21

Now, if the lens consists in two point-like objects (e.g. a star and its orbiting planet),
the caustic is not point-like any more, and depends on the mass ratio Mp=M� and on the
projected planet-star distance. With the addition of a planet around the central star, the
light curve of the background source will be very close to that of the single lens for most
of its duration, but with �ne structure comprising additional sharp peaks (see �gure 2.5).

Figure 2.5: Theoretical ampli�cation curve for a microlensing event in the case of a double
lens (star and planet). Two di�erent planet masses are represented. The �lensing zone�
is the distance range in which the planet produces caustics inside the Einstein ring of the
star. This zone forfuitously corresponds to star/planet distances of a few AU.

Massive observational programs capable of surveying millions of stars have been under-
way since 1993, and have provided the �rst microlensing event detections. Scienti�c teams
such as MPS (Microlensing Planet Search) and EXPORT (Extrasolar Planet Observational
Research Team) gather detailed photometric information about lensing events sifted from
the vast survey data streams. The event MACHO 97-BMG-41 was recently reported as
the �rst convincing example of planetary microlensing (Bennett et al. 1999, [10]). A triple
lens model, where the lens consists of a planet orbiting a binary star, can be �tted to the
observation data (see �gure 2.6).

Limitations

Unlike other methods, microlensing is not really limited by the target system distance since
it requires no photon from either the planet or the parent star. Moreover, microlensing is
sensitive to low mass planetary system, and is the only known ground-based method to
probe Earth-mass planets orbiting around main sequence stars.

But on the other hand, precise alignment is required for a detectable brightening. The
chance of substantial microlensing magni�cation is extremely small, � 10�6 for background
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Figure 2.6: The best �t light curve of the MACHO-97-BLG-41 microlensing event, from
Bennett et al. [10]. Note that circumbinary planetary systems are a unique territory of the
microlensing planet search technique.

stars in the Galactic bulge, nearby Magellanic Clouds, or the nearby spiral galaxy M31.
Only massive observational programs can provide the required data for planet search.
Another drawback is that speci�c systems cannot be selected for study, and once a mi-
crolensing event is detected, an independent event is unlikely to recur for the same system
on any relevant time scale. Moreover, measurements only give the planet/star mass ratio
and their projected separation (in units of the Einstein radius of the lens).

2.2.5 Pulsar timing

Rapidly spinning highly-magnetized neutron stars are formed during the core collapse of
massive stars (8-20MJ) in a supernova explosion. These neutron stars, called pulsars, emit
narrow beams of radio emission parallel to their magnetic dipole axis, seen as intense pulses
at the object's spin frequency. This frequency ranges from about a second for �normal�
pulsars to about a millisecond for old pulsars (principally found in binary systems).

If a pulsar with period T� has a planetary companion, the gravitational in�uence of the
planet induces a wobble on the pulsar, and hence a variation of the observed pulsar period
since the light travel distance is continuously changing. This variation is expressed as a
function of the orbital plane inclination i and of the pulsar orbit semi-major axis a�:

ÆT� =
a� sin i
c

; (2.10)

where c stands for the speed of light. The high accuracy of pulsar timing (a few microse-
conds) and the high stability of pulsar rotation allow detection of lower mass bodies orbiting
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the pulsar. Jovian or terrestrial planets are expected to be detectable around normal slow
pulsars, while substantially lower masses, down to that of our Moon and largest asteroids,
could be recognized in millisecond pulsar timing residuals (Perryman [46]).

Detection of several Earth-mass planets have been reported since 1992, when a �rst
planetary system has been discovered around an object other than our Sun (Wolszczan [57]).
However the environment of old millisecond pulsars is not particularly well suited for life
growth, due to strong electro-magnetic radiation. This is the reason why pulsar timing
does not give rise to as much interest as other detection techniques. But it can still provide
constraints on plausible formation processes (see Perryman [46] for more details).

2.3 Direct detection

2.3.1 Basic considerations

Direct detection methods, in which we distinguish radiation that comes from the planet,
seem to o�er the best way to discover Earth-like planets. Such methods are also the only
way to determine physical characteristics such as temperature and chemical composition
through spectroscopy. It is therefore the only way to assess the habitable character of
Earth-like planets. Note that a clear distinction exists between the goal of direct detection,
which simply requires resolving the planet's radiation from that of the star, and the goal
of resolving the disk and mapping the surface of an Earth-like planet.

Single classical telescope

Let us �rst consider the possibility to directly detect extra-solar planets with a ground-
based or space-borne telescope observing either in the visible or in the mid-infrared range.
Our �rst priority is to devise an optical system that will resolve objects at a typical angular
separation �p = 0:1 arcsec6, cleanly enough to allow planet detection. Appropriate instru-
ment scale sizes, �=�p, range from about 2 m in the optical and near-infrared to about
20 m at 10 �m. These telescope sizes are conceivable nowadays, even if an interferometer
would probably be preferred in the mid-infrared range.

On the other hand, the criterion for resolving and detecting objects of enormously
di�erent intensities needs some discussion. The planet does not have to be brighter than
the local halo of scattered starlight, but its detection does require that, at a minimum,
the random �uctuations in the halo due to photon noise be smaller than the planet signal.
De�ning the gain of an optical system as the ratio of the stellar peak intensity to the star
intensity at the image of the planet, Woolf and Angel [60] derive typical values of the
gain for a Sun-Earth system at 10 pc: about 6� 108 at 800 nm (e.g. for O2 spectroscopy
with resolution R � 40), but only about 9� 103 at 9.7 �m (e.g. for O3 spectroscopy with
resolution R � 10). These values were computed for a signal-to-noise ratio (SNR) of 5 in
10 hours for detection, or equivalently, for a SNR of 25 in 10 days for spectroscopy.

6This angular separation corresponds to the case of a Sun-Earth system seen at 10 pc.
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Unfortunately, the point-spread function for usual circular telescope aperture drops
only slowly with angle. The gain at an angle � far from the central peak is given by

G(�) = 4�2(D�=�)2 ; (2.11)

where D is the telescope diameter. For example, for � = 10�=D, the gain is about 5� 104.
For the G values derived above, we �nd that the diameter required for infrared detection
(D = 10�=�p � 200 m) is too large to be practical, while for any realistic diameter, the
gain is far too low for optical planet detection.

Adaptive optics on large ground-based telescopes

When ground-based observation is considered, the planet signal is immersed in the seeing
pro�le arising from turbulent atmospheric refraction, which is far more problematic than
the di�raction pro�le. Prospects for ground-based planetary imaging have concentrated on
the use of adaptive optics (see Angel [1]). This method relies on continuous measurement of
the wavefront from a reference star (or from an arti�cial laser guide star), then applying an
equal but opposite correction using a deformable mirror containing actuators distributed
across its surface, at frequencies of order 1 kHz.

Adaptive optics programs underway at the world's largest ground-based telescopes
(VLT, Keck, LBT) may ultimately have the sensitivity to detect giant planets around
some tens of nearby stars. In its 1994 article, Angel describes this possibility in a very
detailed way. Its conclusion is that Jupiter-like planets with a 5-AU orbit around nearby
stars could be detected with 8-m class telescopes in a 1-hour integration at the 5� level, if
the actuator spacing was reduced below 5 cm. More than 104 actuators would be needed,
with a sampling frequency of about 2 kHz. This optical system would even be capable of
detecting an Earth-like planet around the singularly close binary star � Centauri (1.3 pc).
But a more comprehensive search for Earth-like planets would require massive optical aper-
ture, such as the 100-m OWL telescope (under consideration), equipped with about 106

actuators (see Perryman [46]).

Apodization

Apodization uses controlled variations in transmission or re�ectivity of the entrance pupil
in order to change the side-lobe intensities of the di�raction pattern. To obtain a strong
suppression close to the star image, a new form of apodization has been devised by Angel
et al. [2]. An annular pupil mask has the e�ect of deepening and broadening the �rst dark
ring of the di�raction pattern. Angel et al. consider the possibility of imaging the thermal
emission of the planet in order to reduce requirements for gain and hence surface accuracy.
Gain greater than 105 is achievable over the range of radii � = 1:7 to 2.3 �=D. A space
telescope designed to sense a 1-AU planet at 5 pc at 10 �m wavelength would require a
diameter of 20 m, which is still uncomfortably large.

Conclusion

In the visible range, the main limitation to imaging devices is the huge contrast, which
cannot be fought with �classical� telescopes. On the other hand, when observing in the
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mid-IR range, the main limitation comes from the angular resolution, which forces us to use
very large apertures. Therefore two kinds of possibilities arise for direct planet detection,
depending on the spectral range. The �rst consists in optical single-aperture coronagraphy,
while the second relies on infrared interferometry.

2.3.2 Classical Lyot coronagraphy

Coronagraphy is a rather old technique used to observe highly contrasted objects. Lyot
has originally devised it at the beginning of the 1930's in order to observe the Solar corona
without eclipse. He managed to reduce the scattered light to a maximum by re-imaging the
primary focal plane and by placing a so-called Lyot mask in the associated pupil plane (see
�gure 2.7). This technique allows to reduce the solar halo by a factor between 10 and 100
when well-polished optics are used (see Ollivier [43]). Super-smooth optics are essential in
order to reduce the light scattered by the surface roughness of optical elements.
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Figure 2.7: Principle of a Lyot coronagraph.

This technique has been adapted to stellar coronagraphy with great success, particularly
when coupled to adaptive optics systems (in order to reduce the light scattered by the
atmosphere) or when used on space telescopes. Unfortunately, classical Lyot coronagraphy
does not allow very close-sensing of the star environment: the smaller the focal mask, the
wider the scattering blur, and the more one has to stop the pupil down to eliminate light
di�racted by the edge. In practice, the central area of the �eld is masked up to more than 3
Airy rings, providing sensing capabilities not better than 100 mas for a 8-m class telescope
in the visible range. So, even the world's largest telescopes do not allow the study of the
habitable zone for typical G-type stars at 10 pc with a Lyot coronagraph. Moreover, by
hiding the central part of the �eld, we do not bene�t from the region where adaptive optics
is the most e�cient. New types of stellar coronagraphs have recently been proposed to
avoid this problem.
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2.3.3 Phase mask coronagraphy

Principle

This coronagraph, proposed by Roddier and Roddier [49] is essentially identical to the
Lyot coronagraph apart from the stellar occulting mask which is replaced with a phase
mask. The phase mask is much smaller than the occulting mask: it covers only a fraction
of the core of the Airy pattern. It is totally transparent, but induces a 180Æ phase shift on
the incoming wave. After transmission through the mask, the complex amplitude can be
expressed as a sum of two terms7 A(~�) + B(~�), where A(~�) is the complex amplitude of
the Airy pattern in which the central part has been removed, and B(~�) is a function equal
to zero everywhere except over the small mask where it is negative (180Æ phase shift), see
�gure 2.8.
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Figure 2.8: Sketches of the amplitude in the image plane (left) and in the following pupil
plane (right), adapted from Roddier [49].

The complex amplitude in the following pupil plane is the Fourier transform eA(~r)+eB(~r)
of the previous sum, where the position ~r is expressed in wavelength unit in the telescope
aperture plane. Since the Airy pattern has been set to zero at the origin, its Fourier
transform eA(~r) resembles the telescope aperture transmission function but it is zero mean,
i.e., eA(~r) is positive inside the telescope aperture, but negative outside. If B(~�) is much
narrower than the Airy pattern, its Fourier transform eB(~r) is much wider than the telescope
aperture and negative everywhere (see �gure 2.8). If its modulus can be made equal to
that of eA(~r) inside the aperture, both terms will cancel out by destructive interference
sending all the star light outside the telescope aperture where it is intercepted by the Lyot
stop. On the other hand, light from a faint companion outside the phase mask will be little
a�ected and almost totally transmitted.

There are two possibilities to balance the two illuminations: if a very small phase mask
is used, the light outside the phase mask can be reduced by a density �lter8, but the

7The position vector ~� is considered here as angular coordinates on the sky.
8Theoretically, light rejection can be as good as one wants by making the mask smaller and hence the

two amplitudes more uniform over the telescope aperture, but at the cost of an ever increasing exposure
time.
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phase mask can also be extended in order to cover exactly 50% of the energy in the Airy
pattern. In that case, the two interfering beams are no longer uniform over the aperture
plane, but computer simulations show that the rejection level is still better than that of a
conventional Lyot coronagraph. In addition, phase mask coronagraphy allows observations
to be made much closer to the central star, and therefore detection of close companions.
A drawback of the technique is that the phase mask is wavelength dependent, as well as
the width of the Airy disk. This restricts the observation to small spectral bins (typically
�� � 0:03 �m for � about 1 �m). Means to produce achromatic phase masks are currently
under development and could solve the �rst problem in a near future (see section 3.4.4).
Glass materials with an appropriate color dependent transmission could be used to balance
the �uxes over a wide spectral range. Another suggestion is to use a Bragg hologram as
a phase mask: the mask could be made so that each wavelength sees it as being the right
size and having the right phase shift.

Performances

Using a 3.6 m telescope and an observation wavelength of 1.65 �m, Roddier [49] shows
that the attenuation of the envelope at 0.4 arcsec can be as high as a factor of 210 for a
phase mask covering 43% of the Airy pattern9 (i.e., 50% of its energy), and as high as 103

for a small phase mask, with radius 0.2 times that of the Airy ring (illumination is reduced
by a factor about 38 by means of a density �lter in that case). With these performances,
brown dwarf companions can easily be detected very close to their host star, but this is
clearly not enough in order to detect Earth-like exoplanets. Moreover, performances of
ground-based coronagraphs strongly depend on the quality of the adaptive optics system,
because it determines the amount of atmosphere-scattered light.

Improvements

The �rst possible improvement comes from apodization: if the entrance pupil has a negative
curvature (transmission decreases towards the center of the pupil), the positive curvature
of eA(~r) + eB(~r) can be cancelled. Guyon and Roddier [20] have developed an algorithm
that computes the optimal transmission map for the pupil. This optimal map has a 49%
minimal transmission at the edges of the pupil and a total integrated transmission of 73%.
The theoretical extinction factor increases from 210 to 107 for a monochromatic on-axis
point source.

The ultimate limitations of space-borne coronagraphic systems do not come from their
optical performances, but from scattering due to imperfections in the optical surfaces of the
collecting system. In order to reduce these imperfections, Malbet et al. [35] have proposed
the use of a deformable mirror to decrease the scattering level in local regions called �dark
holes�. Since scattering close to the optical axis comes from the �gure errors of the mirror
with large spatial scale, adaptive optics for space telescopes could provide a method of
decreasing the on-axis scattering level. This demands the deformable mirror to be densely-
actuated. Another way to improve the performances of coronagraphic systems is the use

9This rejection ratio is reduced to 156 when one takes into account the loss through the Lyot stop.
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of dark-speckle analysis (see section 2.3.5).
The adaptation of a phase-mask coronagraph to the NGST is now being considered

(see Boccaletti et al. [12]). The instrument concept relies on the combination of phase-
mask coronagraphy, adaptive optics (dark-hole method) and dark-speckle analysis as the
last stage of starlight suppression. Its ultimate goal is to attain 109 dynamic range in a
1 arcsec �eld of view for the detection of Earth-like planets around nearby stars in the
visible and near-IR ranges. This dynamic range would be achieved in a few tens of hours.

Four-quadrant phase-mask coronagraphy

A new type of phase-mask coronagraph has recently been proposed by Rouan et al. [50].
It uses a four-quadrant binary phase mask (0, �) covering the full �eld of view in the
focal plane. The mutually destructive interferences of coherent light from the main source
produce a very e�cient nulling. The computed rejection rate of this coronagraph appears
to be very high since, when perfectly aligned and phase-error free, it could in principle
reduce the total amount of light from the bright source by a factor of 108 at the location
of the �rst Airy ring relative to the Airy peak. When used on Earth, this coronagraph
appears to be less sensitive to atmospheric turbulence and has a larger dynamic range
than the traditional phase-mask coronagraph. Simulations have shown that a ground-
based detection at a contrast of 10 magnitudes between stars and faint companions is
achievable under excellent atmospheric conditions.

2.3.4 Achromatic interfero coronagraphy

Principle

The basic principle of an achromatic interfero coronagraph relies on a Michelson interfer-
ometer modi�ed by inserting in one arm an achromatic �-phase shift and a pupil �-rotation
in its plane (Gay and Rabbia [19], Baudoz et al. [5]). Both e�ects are obtained by replacing
in one arm the �at mirror by a cat's eye (see �gure 2.9). The two beams are recombined
at a common pupil plane where a focusing element forms an image on a camera. When
the source is point-like and set on-axis, the coronagraph delivers a point spread function
(PSF) whose maximal intensity is weighted at zero when the optical path di�erence (OPD)
is set to zero, so that the image plane is utterly dark. This nulling would also a�ect the
planet, but because of pupil rotation the light from the companion is una�ected by the
destructive interference process. In that case, the o�-axis source yields two twin images
(half power each) in the focal plane while the �blinding� central on-axis source has been
removed thanks to the nulling process.

Mathematically, if P (~r) is the entrance pupil function and �(~r) the phase of the in-
coming wave (with ~r the coordinate in the pupil plane), the output amplitude distribution
writes

A(~r) / rt
�
P (~r)ei�(~r) � P (�~r)e�i�(~r)+i�� (2.12)

where r and t are the re�ection and transmission coe�cients of the beam-splitter. Assu-
ming perfect symmetry for the entrance pupil (P (~r) = P (�~r)), this expression reduces to
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Figure 2.9: Principle of the AIC (�gure from Pierre Baudoz' personal web-site). The
corrected wavefront is divided in two equal parts by the beam-splitter. One of the beams
undergoes a 180Æ rotation and phase shift by passing through a focus. The resulting image
consists in two symmetrical replica of the o�-axis planet.

2irtP (~r) sin(2�~r � ~�0) since the phase of the incoming wave from a point source located at
~�0 simply reads �(~r) = 2�~r � ~�0. To this pupil plane distribution corresponds the following
amplitude distribution in the image plane (obtained by a Fourier transform):

eA(~�f ) / 2irt( eP (~�f � ~�0)� eP (~�f + ~�0)) ; (2.13)

which cancels everywhere on the image plane if the source is centered on ~�0 = 0. On the
other hand, any o�-axis source produces two symmetrical images.

Because of its original design, this coronagraph has some speci�c properties. First, the
achromaticity of the phase shift results from the crossing of an additional focus. A second
characteristic is that the interferometric process does not result in a �dark zone� at the
center of the image, but rather suppresses in the whole image plane all light coming from
an on-axis unresolved source. Two crucial features are the need for perfect pupil symmetry,
which could be broken by residual aberrations of the telescope (or even by the spider) or
by the atmospheric turbulence, and the need for an accurate OPD control, which can be
achieved by measuring the constructive output of the beam-splitter (the non-science output
where the on-axis light is sent). Another speci�c feature of the AIC relates to close-sensing
capabilities since it allows sensing as close as a fraction (0.5 to 0.3) of the Airy radius,
which is better than the di�raction limit set by the aperture and not reached by other
coronagraphs.
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Performances

As in the case of phase-mask coronagraphy, the performances of a ground-based AIC
depends on the quality of the adaptive optics system. The �rst observations with an AIC
took place in October 1997 at the 1.52 m telescope of the Observatoire de Haute Provence,
equipped with the BOA adaptive optics system. Working in the K band (� = 2:2 �m),
a magnitude di�erence �K of about 4.5 is detectable at one Airy radius from axis, with
the help of mean radial pro�le subtraction [7]. On the other hand, theoretical simulations
show that a magnitude di�erence about 12 can be reached in the case of complete adaptive
optics correction up to the ninth radial mode.

Observing from space, the ultimate limitation regarding rejection rate comes from wave-
front distortions, which result in a residual halo (volcano shaped) of unwanted light. This
halo is not the trouble since it can be removed by an appropriate observing strategy. The
trouble comes from shape �uctuation and photon noise, since they limit the detectability
of faint companions. Numerical simulations (see [47]) based on a phase error map from
HST have provided the pro�le of the expected halo at � = 2:2 �m: a halo culminating at
roughly 13 magnitudes below the maximum of the Airy pro�le has been found. Simulations
also show that a SNR about 10 can be achieved in a 1000 sec integration for a magnitude
di�erence �K = 14 if the central star has K = 8. This gives an encouraging starting point
as soon as a comparable or even better optical quality will be achieved on NGST (for which
the most limiting factor could actually be pointing instabilities). The range of magnitude
di�erences and angular separations which should be reached allows good hopes concerning
exoplanet detection.

Improvement: hybrid coronagraphy

In order to get rid from the 180Æ ambiguity in the resulting image, a focal mask can be
inserted in the cat's eye focal plane (Baudoz et al. [6]). This hole will block all the light
coming from the observed object except the central core of the di�raction pattern, so
as to obtain a spatially �ltered wavefront that is achromatically �-phase shifted. When
recombining the two arms, we encounter the same interference process as in the case of a
phase mask coronagraph. The only di�erence is that the �-phase shift is achromatic. A
limitation still remains in the width of the focal mask that is optimized for a monochromatic
light. When the bandwidth increases, the nulling e�ciency decreases, but slower than when
a phase mask is used. The di�raction e�ect from the focal mask can be reduced by using
an apodized transmission of the pupil. Laboratory tests on a prototype have validated the
concept [6].

2.3.5 Dark speckle technique

In the dark speckle technique (Labeyrie [25]), rapid random changes in optical path length
due to atmospheric turbulence are exploited, with the goal of detecting the planet in very
short exposures (� 1 msec) when, by chance, the star light interferes destructively at the
planet location. The planet's Airy peak, restored by an adaptive optics system, has a
rather stable intensity, which adds to the star's local intensity. The intensity histogram is
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therefore locally distorted, and suitable algorithms can display the local distortion in the
form of a cleaned image. With a large telescope and hours of (discontinuous) integration,
a planet 109 times fainter than its parent star is expected to become visible [11]. This
technique can also be a precious complement to traditional coronagraphy techniques, as
mentioned above. In both cases, the spatial and temporal resolutions of the camera have to
be respectively better than the speckle area (about 500 pixel per speckle area) and shorter
than their lifetime (typically about 10 msec). A narrow-band �lter is also required because
the di�raction and the speckle pattern are color-dependent.

Although it has been initially devised for ground-based telescopes, the dark speckle
technique is also applicable to space telescopes, the seeing being provided by the deformable
mirror reshaping. In that case, the individual exposure time is set by the adaptive optics
stability, which is of the order of a few seconds in space. This considerably reduces photon
noise compared to the ground-based observations.

2.3.6 Infrared nulling interferometry

Since angular resolution is the limiting factor when mid-IR observation is considered, in-
frared interferometry is an obvious solution for direct planet detection: the interferometer
baseline can be adapted to any realistic angular separation. Moreover, the use of an inter-
ferometer can achieve starlight cancellation by means of destructive on-axis interference.
This possibility has �rst been proposed by Bracewell [15] and will be described in full detail
in the following chapter. We will prove that Earth-like planet detection and characteriza-
tion by means of low-resolution spectroscopy is a reasonable goal with this technique.

2.3.7 Densi�ed-pupil imaging interferometry

Fizeau interferometers, the equivalent of giant telescopes having a sparse mosaic mirror,
produce an image, but its quality degrades catastrophically when the total aperture size
becomes much larger than the sub-apertures (see section 1.2.1). A usable image can how-
ever be retrieved by densifying the exit pupil, i.e., distorting it to increase the relative
size of the sub-pupils (see Labeyrie [26]). Such instruments, which may be called �hyper-
telescopes�, evade a requirement long believed to be a golden rule of imaging interferometry,
namely, that the exit pupil be identical to the entrance pupil. Instead, one preserves only
the arrangement of the sub-pupil centers, while magnifying each sub-pupil with respect to
the inter-pupil spacings, thus making the exit pupil more densely packed than the highly
diluted entrance pupil (as explained in [13]).

In order to study circumstellar environments, it is possible to use a phase mask coro-
nagraph on a densi�ed-pupil interferometer (see Guyon and Roddier [20], Boccaletti et
al. [13]). Pupil densi�cation of a sparse array of apertures creates a PSF close to a single-
aperture telescope PSF. Under those conditions, the phase mask coronagraph can work
e�ciently. Based on this principle, the proposed �Exo-Earth Discoverer� is a 36-element
interferometer (each telescope about 0.6 m in diameter) with variable size ranging between
50 and 500 m, which has the short-term goal of obtaining unresolved images of exoplanets
in the mid-IR range [13]. Simulations of a twin of the Solar System located at 20 pc have
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shown that Earth-like planets can be detected in a 10-h exposure, even when dark-hole
and dark-speckle techniques are not used. Note that an Achromatic Interfero-Coronagraph
could be used instead of the phase-mask coronagraph. This possibility has not been eva-
luated yet.

Until now, we have only considered the goal of detecting Earth-like planets, without
resolving their surface. The next step will be to obtain resolved images of such bodies,
which requires interferometric arrays with a typical size of 100 km (and about 150 aperture
elements of 3 meters). Densi�ed-pupil interferometry can in principle provide such images,
showing continental details and possibly �green spots� indicative of photosynthetic life
(Labeyrie [27]).

2.4 Choice of the wavelength: a criterion for life

We have seen that four techniques are capable of detecting Earth-like exoplanets: pho-
tometric transits, gravitational microlensing, coronagraphy and nulling interferometry.
Among those techniques, only the last two ones have the capability to characterize Earth-
like planets by means of low-resolution spectroscopy. Mono-pupil coronagraphy is restricted
to the visible and near-infrared spectral ranges because of angular resolution, whereas
nulling interferometry with a typical 50 m baseline (and therefore better resolution) bene-
�ts from a lower contrast by observing in the mid-infrared range. A crucial advantage of
the mid-infrared range is that the huge ratio of the star to planet �uxes is reduced by about
three order of magnitudes with respect to the visible range. But recent breakthroughs in
coronagraphic techniques have made it possible to �ght against the huge contrast in the
visible range.

The �nal choice between coronagraphy and nulling interferometry has therefore to take
into account the capabilities of these two spectral ranges to evidence life by remote sensing,
which is the ultimate goal of future planet �nder missions asDarwin or TPF (see chapter 3
for a description of those missions). In this section, the most popular criterion for life is
brie�y described, as well as its consequences on the choice of the observation wavelength.

� The H2O - O2 criterion. Owen showed that, if based on chemistry, life is likely
to rely on organic chemistry and require the presence of liquid water (see Léger et
al. [31], [32]). He also showed that if biological activity on a telluric planet develops
on a large scale, it necessarily produces a large quantity of O2. As this gas is highly
reactive with reducing rocks and gases emitted by volcanoes, it would disappear in
a short time in the absence of continuous production. The massive presence (1-1000
mbar) of O2 would therefore be a strong indication of (primitive) life. O2 has spectral
signatures in the visible (two bands at 720 and 760 nm), whereas H2O shows large
absorption bands in the 6 � 8 �m and 16� 20 �m spectral ranges. It is the reason
why these two species cannot be simultaneously detected.

� The H2O - O3 criterion. An important step was made when Angel et al. [2] showed
that ozone (O3) is an attractive tracer of O2. The spectral signature of ozone occurs
in the mid-infrared (9.6 �m), where the ratio of the star to planet �uxes is more
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favorable. Moreover, ozone has a logarithmic dependence upon the O2 concentration:
even a small amount of the latter would give rise to a signi�cant O3 band at 9.6 �m.
The 6 � 18 �m region seems therefore very informative, since it contains spectral
features of H2O and O3, but also of CO2 at 15 �m (see �gure 2.10). The raw
materials in the primitive atmospheres of terrestrial planets are indeed expected to
be fully oxidized carbon (CO2). Finally, the detection of CH4 at 7.7 �m, which
requires a higher spectral resolution (around 1000), would strongly suggest biological
activity as we know it on Earth.

Figure 2.10: The infrared spectrum of the Earth as observed from an orbiting Nimbus
satellite shows a variety of spectral features. Taken from the ExNPS Road Map web-site.

For all these reasons, the current baseline for future exo-Earth �nder missions (Darwin
and TPF) is a nulling interferometer working in the 6� 18 �m spectral range. In order to
safely detect the ozone band, a resolution of 20 should be reached. The Darwin concept
seems to be our best hope to achieve these performances, and so to detect habitable planets
outside our Solar System for the �rst time.



Chapter 3

Nulling interferometry and ESA's
Darwin mission

In this chapter, we focus on space infrared interferometry, and especially on ESA's Dar-
win mission, whose main goal is to detect and characterize terrestrial exoplanets. Unless
explicitly speci�ed, a typical target consisting in a Sun-Earth system at 10 pc is assumed.
Since the orbital plane is randomly oriented, a mean angular separation of about 80 mas
is assumed (see [39]).

3.1 Principle of a Bracewell interferometer

As we have seen in the last chapter, there are two major problems to be solved to directly
detect exoplanets: the high contrast requires a broad dynamic range, and on the other hand,
a high angular resolution is necessary. However, while the angular separations are �xed
constraints, the contrast ratio is amenable to modi�cation in at least to ways: observing in
the infrared and altering the intrinsic contrast ratio with an optical device. Both of these
have been used by Bracewell to design his famous nulling interferometer ([15], [16]).

3.1.1 Description

The basic principle of nulling interferometry is quite simple: combine the light incident on
a pair of telescopes in a co-axial mode, adjusting their respective phase in order to produce
a totally destructive interference on the optical axis. The two electric �elds must be �
radians out of phase to achieve that kind of interference.

Figure 3.1 illustrates the theoretical design of such an interferometer, where the re-
combining system induces an achromatic1 phase shift of � radians. If � represents the
angular distance from the axis to the star projected along the interferometer baseline, the
interference pattern resulting from the superposition of the two waves is proportional to
sin2(��=�), if the observed quantity is an intensity (i.e., the square of the complex ampli-
tude). The parameter � = �=L is the angular separation of the �rst out-of-axis minimum,

1i.e., independent of the wavelength

34
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Figure 3.1: Sketch of Bracewell's nulling interferometer. The recombining system provides
an achromatic � phase shift on one of the two outputs.

with L the distance between the two telescopes and � the observation wavelength. It
depends on the distance between the two telescopes (or baseline) and on the observation
wavelength. The interference pattern, projected on the plane of the sky, shows alternate
dark and bright fringes (�gure 3.2), corresponding to the minima and maxima of the si-
nusoid. It modulates the planetary signal by a factor ranging between zero and one. The
con�guration of the interferometer is chosen so that the interference pattern sin2(��=�)
has a maximum on a planet at � = �=2 when response at the star (� = 0) is minimized.

Figure 3.2: Transmission map for a perfect Bracewell nulling interferometer with L = 25 m
and � = 10 �m over a 500�500 mas �eld of view.

Since the only information we get while observing the planetary system is an integrated
�ux, we cannot distinguish between a bright source on a dark fringe and a faint source on
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a bright fringe. Moreover, the faint planetary signal has to be detected in the presence of
unwanted signals (see section 3.1.2). That is the reason why Bracewell proposed to conti-
nuously rotate the interferometer with periods of about an hour to modulate the planetary
signal, the planet alternately crossing dark and bright fringes. The signal modulation of
an o�-axis point-like source is strongly dependent on two parameters:

� The coordinates of the source relative to the central star. The further the planet,
the more fringes it crosses during a complete array rotation, and so the highest the
modulation frequency.

� The observation wavelength and the baseline. Indeed, the interferometric pattern
varies with both of them: the pattern is narrower when the wavelength is shorter or
the baseline longer.

Therefore, a simple Fourier analysis will be su�cient to localize orbiting planets. For ex-
ample (�gure 3.3), if the planet has � = �=2, then the signal will vary as sin2[(�=2) cos!t],
where ! represents the frequency of the interferometer spin. This function has a funda-
mental frequency of 2!, but also contains a noticeable amount of the 4! harmonic. Very
faint signals can be recovered by synchronous detection if they are modulated at a known
frequency (Bracewell and MacPhie [16]).
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Figure 3.3: Left: path of the planet on the transmission map for a perfect Bracewell
interferometer, with the planet at � = �=2. Right: modulation of the planetary signal, at
a principal frequency 2! = 2:8� 10�4 Hz (one rotation completed every two hours).

The essential characteristic of such an interferometer is its high dynamics, which is
measured by the rejection rate �, de�ned as the ratio of the stellar �ux that would be
observed without a � phase shift over the one observed after the destructive interference.
Note that this ratio varies as ��2 for small �, because of the sin2(��=�) dependence of the
pattern for a Bracewell interferometer.
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3.1.2 Fundamental limitations

Bracewell's concept, however interesting, will not be used as such to detect Earth-like
planets, even with a space interferometer. Its limitations are related to extraneous signals
that add to the planetary signal, and to the incapacity to remove them in order to extract
the useful information.

Stellar leaks

Even with an ideal Bracewell interferometer, the stellar signal is only perfectly cancelled
on the optical axis. The �nite stellar diameter allows for light from the edges of the star
to �leak� through the fringe pattern. As we will see in the next section, the theoretical
rejection rate is related to the spatial con�guration of the entrance pupil. In the case of
a two-telescope nulling interferometer, the rejection rate grows with decreasing angular
distance in a � / ��2 law, which gives typical rejection rates of order 103 for nearby
main sequence stars (see section 3.4.2). This rate allows the detection of hot Jupiters, but
Earth-like planets are completely out of reach.

Figure 3.4 shows a cross-sectional view through the null fringe and the star (thick line
above the horizontal axis) for three rejection functions. It illustrates the leakage of the star
edges through the fringe pattern.
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Figure 3.4: Stellar leak for �=2 = 50 mas (position of the �rst maximum). The three
curves illustrate the �2, �4 and �6 dependence of the starlight transmission close to the
axis. The bold horizontal line represents the size of the stellar disc.

The noise created by the star can be separated into two components: the constant
component resulting from the incomplete cancellation of the stellar �ux, and the variable
component resulting from the variation of the rejection rate, due to optical path di�erence
(OPD) and di�erential pointing variations. This last term, called �leakage jitter�, can be
shown to be negligible for jitter values < 1 mas (see [8]).
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Exo-zodiacal light

Besides proximity and contrast, a third obstacle to direct exoplanet detection is the possible
emission from exo-zodiacal dust grains congregating in and near the orbital plane of the
target planetary system. Such dust disks can be expected both by analogy with our own
solar system's zodiacal cloud, and by extrapolation of the few known cases of very bright
circumstellar disk emission.

The disk's morphology and intensity are a priori unknown. Suppose it has a circular
symmetry, and the same intensity as the solar zodiacal cloud, we can then infer some
characteristics of the resulting modulated signal. If the system is seen pole-on, the exo-
zodiacal signal is not modulated by rotation of the array, and the planetary signal can
be easily isolated. On the contrary, if the line-of-sight is not perpendicular to the ecliptic
plane of the exo-system, circular symmetry won't be observed anymore, and the centro-
symmetric exo-zodiacal signal will be modulated, at the same rate as the planetary signal
since the array has central symmetry.

The problem is all the more serious because the total integrated �ux from the exo-
zodi is 400 times higher than an earth-like planet �ux, when observed at 10 �m. Taking
into account the multiplication by the transmission map that cancels the center of the
exo-zodiacal light, this ratio reduces by a factor ' 3, but the problem still remains (see
�gure 3.5). This source also contributes to the background radiation, and its noise has to
be taken into account.

Figure 3.5: Cross-sectional view through an edge-on exo-zodiacal cloud at distance 10 pc,
showing the emergent �ux and the �ux transmitted by the 10 �m fringe pattern of the
Keck interferometer in the nulling mode (from [28]).

In order to scale the interferometer for adequate sensitivity (and particularly if the exo-
zodiacal light is the main source of noise), the 10 �m emission from such dust clouds must
be characterized prior to launch of the space interferometer by means of a ground-based
interferometer or coronagraph (see chapter 5).

The ability to identify an Earth-like planet would also be severely degraded if there were
�random� exo-zodiacal brightness variations with 10% amplitude. Fortunately, the overall
zodiacal cloud is expected to be relatively homogeneous because of the smoothing e�ect of
the dissipation forces, and therefore, inhomogeneities should not a�ect planet detection.
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The background: local zodiacal light

One of the main noise sources of background radiation is the thermal emission due to dust
accumulated in the local zodiacal cloud. It creates a di�use glow at infrared wavelengths
that hampers the view of the sky, just as city's lights hide the faintest stars from our gaze.
The radiation gets brighter and �warmer� as we approach the Sun, and is also dependent on
the line-of-sight. For a near-Earth orbit, and a line-of-sight at 90Æ from the Sun direction in
the ecliptic plane, the emission can be represented by a grey body emission at a temperature
of 235 K and with a grey emissivity of 3:8� 10�7 (see [33], p.72).

Being an extended source, the zodiacal light gives a total �ux proportional to S
 =
3:7�2 (see [54]) where S is the telescope surface and 
 the solid angle de�ned by the �rst
dark ring of the Airy pattern at the detector. On the other hand, the planetary signal is
proportional to the collecting area. If the interferometer orbits at 1 AU from the sun with
1 meter class telescopes, the integrated zodiacal light is typically 103 times larger than
an Earth-like planet signal at 10 pc, but is not modulated by rotation of the array. The
drawback of such an emission is twofold:

� The noise generated by the local zodi can prevent from detecting the planetary signal.

� The long term instability of the background over typical periods of an hour intro-
duces another di�culty in the detection of the planet signal, since it induces signal
�uctuations at the typical modulation frequency of the planet signal.

Since the collected zodiacal light is independent of the diameter, the signal-to-noise
ratio varies as D2 (D representing the diameter of the apertures) and the integration time
as 1=D4. It is the reason why the �rst proposed con�gurations had very large apertures.
A detailed study of the zodiacal cloud emission can be found in Eric Thomas' thesis [54].

Other contributors to the background

The thermal background emission of the interferometer can generate troublesome levels of
background signal whenever the temperature of the cold optics exceeds 40 K (see [34]).
Another contributor to the background is the detector dark current. It should be below
10 e�/s/pixel per spectral channel in order to remain negligible when compared to the
local zodiacal light background. The thermal emission of the interferometer should also be
very stable in time, as well as the e�ciency of the detectors, the gain of the ampli�ers, : : :

One of the principal advantages of space observation is that the optics can be cooled to
reduce their proper infrared emission. The goal is to achieve a thermal background smaller
than the contribution of the local zodiacal light. This is the case if the optics are cooled
under 40 K, which can be reached with passive cooling.

3.2 Improvements of the basic concept

Since 1979, many improvements of Bracewell's original concept have been proposed. In this
section, I will summarize the chronology of the main ideas, emphasizing on the theoretical
aspects needed to proceed in this work.
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3.2.1 Central attenuation

The interferometer response

This paragraph is largely based on the work of Mennesson and Mariotti ([37], [40]).
As stated in the last section, the most important source of noise comes from the stellar

leaks in Bracewell's con�guration, whose rejection rate is smaller than the required rate2

by about three orders of magnitude. To obtain a rejection rate � � 106, the transmission
of the interferometer near the optical axis must be proportional to �4 or even better to �6

(see �gure 3.4), where � is the o�-axis angle when pointing towards the star. In order to
achieve that functional dependence, more than two independent apertures are needed.

Consider the case of an interferometer with n telescopes in a two-dimensional array
(�gure 3.6). The telescope coordinates are characterized by polar coordinates (Lk; Æk)
de�ned with respect to the center of the array, taking one of the interferometer arms as
a reference. The diameter of each telescope is denoted Dk. We assume that an arbitrary
achromatic phase shift �k is applied to each beam before recombination. The location of a
point source is de�ned by the angular separation from the star (�) and the azimuth relative
to the �rst interferometric arm (�).
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Figure 3.6: Geometrical con�guration of the array and the stellar system. Planetary
coordinates are given by the o�-axis angular direction ~� = (�; �). Each telescope of index
k is located by means of the vector ~Lk = (Lk; Æk) in a reference frame with arbitrary origin
O, used as a common phase reference.

Neglecting aberrations, the detected complex amplitude from a point-like source ~� =
(�; �) is given by (see Mennesson's thesis [37], p.136)

A(~�; ~r) = �(r=R)
�
A1(~�)e

j�1 + : : :+An(~�)e
j�n
�
; (3.1)

where ~r is the coordinate on the circular output pupil (assumed to be circular of radius R),
� is a rectangular box function3 and where the moduli Ak of the complex amplitudes Ak

2The rejection rate needed to detect Earth-like exoplanets within a reasonable integration time is larger
than � 106 (Léger et al. [31]).

3�(r=R) = 1 if and only if r 2 [0; R], with r � 0 by de�nition.
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are proportional to the telescope diametersDk, provided that the same transmissions a�ect
the n beams. The complex amplitudes also depend on the external OPD with respect to
the origin O of the axes: ~Lk � ~� = Lk� cos(Æk � �), giving the expression

A(~�; ~r) = �(r=R) ej2�~r�
~�=�

nX
k=1

Ake
j2�(Lk�=�) cos(Æk��) ej�k : (3.2)

The amplitude distribution in the focal plane is obtained by Fourier transform, which
will not alter the constant terms following the summation sign. Denoting �f the angular
coordinate in the focal plane and 
 the convolution sign, we obtain:

eA(~�; ~�f) / 2J1(�D�=�)

�D�=�

 Æ(j~�f � ~�j)

nX
k=1

Ake
j2�(Lk�=�) cos(Æk��) ej�k : (3.3)

Thus, the intensity distribution I(~�; ~�f ) = jeA(~�; ~�f )j2 in the focal plane is the product
of a classical di�raction term and a constant interference term, which only depends on the
aperture con�guration. Using a monopixel detector and neglecting di�raction features, we
obtain a signal of energy proportional to the interferometer response:

R(�; �) =

�����
nX
k=1

Ake
j2�(Lk�=�) cos(Æk��) ej�k

�����
2

: (3.4)

Generalized entrance pupil

As stated by Mennesson [38], the generalized entrance pupil4 P in the telescope plane of
coordinate ~r is de�ned by:�

P (~r=�) = Ake
j�k if ~r is in the aperture of telescope k ;

P (~r=�) = 0 otherwise.
(3.5)

For point-like telescopes located at ~Lk, it can be rewritten in our case as:

P (~r=�) =
nX
k=1

Æ(~r=�� ~Lk=�)Ake
j�k : (3.6)

Note that the generalized entrance pupil is complex in the general case, and that the
interferometer response R(�; �) is the square modulus of the Fourier transform of P (~r=�).

Conditions for a �2p transmission

Let xk be equal to 2�(Lk�=�). Close to the line-of-sight, we can develop the interferometric
response in a power series

R(�; �) =

�����
nX
k=1

Ak e
j�k
�
1 + jxk cos(Æk � �)� (x2k=2) cos

2(Æk � �) + : : :
������

2

=

�����
nX
k=1

Ak e
j�k +

nX
k=1

Ak e
j�kjxk cos(Æk � �)� : : :

�����
2

: (3.7)

4This concept is derived from the classical de�nition of the entrance pupil of an optical system, see [33].
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To have a �2p dependence for the stellar leaks, the �rst p� 1 coe�cients must cancel out,
so that xpk / �p is the �rst contributor to the sum. Assuming Ak / Dk (same transmission
for the n light beams), the cancellation of the �rst p� 1 coe�cients yields the condition:

nX
k=1

Dk (Lk cos(Æk � �))q ej�k = 0 ; 8q; 0 � q � p� 1 and 8� : (3.8)

Now, we can prove mathematically that the rejection rate in Bracewell's con�guration
(two telescopes) has a ��2 dependence. Indeed, we immediately see that the above condition
is only satis�ed for q = 0, leading to p = 1 and a �2 dependence for the central transmission.

3.2.2 A better rejection rate: the Angel Cross and its derivatives

Chronologically, the second proposed nulling con�guration is the Angel Cross (proposed
by J. R. Angel in 1990). This con�guration makes use of four telescopes in a square shape,
combined with multiple beam-splitters for transmission varying as sin4 � instead of sin2 �.
The Angel Cross is indeed a double Bracewell interferometer, where the two outputs are
recombined with no additional phase shift (�gure 3.7). Angel's �rst idea was to use four
8 m-class telescopes standing at the summits of a square about 30 m wide, located at
1 AU from the Sun and achieving an Earth-like planet detection at 10 pc in a few hours
of integration.

The original Angel Cross con�guration has been further investigated in the past few
years, giving rise to new possibilities with a ��4 rejection rate, which are presented below.

Degenerated Angel Cross (DAC)

The Degenerated Angel Cross (DAC) consists of three telescopes in a linear array, with the
central telescope's diameter two times larger than the two others and � radians out of phase
(�gure 3.7). Its name stems from the squeezing of an Angel Cross along one arm. This
con�guration satis�es the condition (3.8) for p = 2, yielding a ��4 rejection rate. It can be
shown (see appendix C.1) that it is not the only 3-telescope linear array with a ��4 rejection:
such a con�guration exists whatever the distances between the three telescopes, but the
outer telescopes does not have the same diameter any longer (the relation D1L1 = D3L3

must be veri�ed). This set of con�gurations is referred hereafter as to the DAC family.
The regular DAC has a particular status in this family, because of its symmetry. In the
following, when speaking of DACs, the use of a regular DAC will generally be assumed.

When looking closer at the beam-combination scheme (�gure 3.8), one can see that the
de�nition of a DAC has to be slightly modi�ed because, in the recombination scheme, the
amplitudes Ak are not exactly proportional to Dk. Indeed, the light from telescopes 1 and
3 crosses two beam-combiners, whereas the light from telescope 2 only crosses one. For
each beam-combiner, there are two outputs: one of them is constructive, and the other
destructive. Each output carries one half of the total energy (i.e., 1=

p
2 times the initial

amplitude). So, the two light beams entering the second beam-combiner do not have the
same amplitude, and do not cancel out for an on-axis source as desired, since the resulting
amplitude is A / 1=

p
2(1=

p
2+ 1=

p
2� 2) 6= 0. Consequently, if one wishes to use a single

DAC, the diameter ratio must be 1:
p
2:1, and not 1:2:1.
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Figure 3.7: The Angel Cross con�guration and its derivatives. The value near each tele-
scope is the phase shift applied at the recombination.
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Figure 3.8: Recombination scheme for the regular DAC. This scheme proves that this
DAC cannot be used with diameters 1:2:1 unless the intensity of the light beam coming
from telescope 2 is reduced (see text). Note that one half of the intensity is lost at each
beam-combiner, since only one of the two outputs is exploited.

Generalized Angel Cross (GAC)

The Generalized Angel Cross (GAC) represents any 4-telescope nulling interferometer with
a ��4 rejection rate restricted to achromatic phase shifts of 0 or � radians. In general, the
telescopes are of di�erent sizes. To avoid long delay lines, the four telescopes must be
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located at equal distances from the beam-combiner in a common plane5, i.e., on a circle
with the beam-combiner at its center. In short, the GAC con�gurations are the plane
4-telescope con�gurations assuming constant distance between the beam-combiner and the
telescopes, satisfying the conditions for a ��4 rejection:

nX
k=1

Dk e
j�k = 0 (3.9)

nX
k=1

Dk cos(Æk � �) ej�k = 0 ; for all �. (3.10)

Figure 3.7 shows that GACs can have perpendicular or non perpendicular arms. In the
last case, it doesn't any longer look like a cross.

Note that GACs do not su�er from the same recombination problems as DACs, because
each light beam crosses two beam-combiners on its path to the detector. The only trouble
is that only a quarter of the total intensity reaches the detector, because one half is lost in
each recombination process.

The �rst Darwin con�guration

The �rst concept for Darwin, proposed by Léger, Mariotti et al. in 1993, was based on an
Angel Cross, but with four 1.5 m class telescopes orbiting at 4 or 5 AU. Telescopes of that
size seem more reasonable than Angel's proposal (with 8 m-class telescopes), and compa-
tible with an Ariane 5 shroud. Small telescopes can be used at 5 AU because the surface
brightness of the zodiacal light drops by a factor 1800 between 1 and 5 AU (see �gure 3.9).
At that distance, the (still unknown) exo-zodiacal light becomes the most important source
of noise. In 1996, a �rst quantitative study of this Darwin con�guration was published by
Léger et al. [31]. Since then, the Darwin concept has been signi�cantly improved (as will
be described in the next sections), and was �nally selected by the European Space Agency
(ESA) as a candidate cornerstone for the Horizon 2000+ program (October 2000).

3.2.3 Asymmetric arrays

The main trouble with the Bracewell and Angel Cross arrays is their central symmetry.
As explained in section 3.1.2, that symmetry prevents the detection of Earth-like planets
because the bright exo-zodiacal light is modulated at the same frequency as the planetary
signal (except if the exo-zodi is seen pole-on, in which case it is not modulated at all).
The solution is to design an interferometer with an asymmetric transmission map, so that
every planetary system can be treated the same way, whatever its inclination.

Five telescopes on a circle

In their 1996 paper, Léger et al. [31] proposed an asymmetric array, made up of �ve
telescopes, regularly located on a circle, with a ��4 rejection law. This con�guration

5We will see later (section 3.3.1) that a plane con�guration is needed to avoid thermal coupling between
the telescopes.
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Figure 3.9: Local zodiacal cloud brightness as a function of wavelength at three distances
from the Sun: 1 AU (top curve), 3 AU (middle curve) and 5 AU (bottom curve). These
curves are relevant for Darwin's typical observing directions. Figure from B. Mennes-
son [37].

has been further studied in a paper by Mennesson and Mariotti (1997, [40]), on which
this paragraph is largely based. To get a ��4 rejection rate, the �ve telescopes must be
regularly spaced on the circle, and the phase shifts equal to �k = 4(k � 1)�=5, which
implies a complex generalized entrance pupil. The transmission map of the interferometer,
projected on the plane of the sky, is shown in �gure 3.10.

If the array is continuously rotated at a frequency f0 � 1 turn per hour, the signal emit-
ted by a planet located on the �rst set of bright fringes will mostly exhibit a 5f0 frequency,
whereas the exo-zodiacal signal will concentrate at 10f0 and higher even harmonics, be-
cause of its central symmetry. This fact allows to extract the planetary contribution to the
modulated signal. But two major problems remain with the circle con�guration:

� The planet's image and location will only be known modulo 2�=5, leading to �ve
possible locations for the planet. This undetermination stems from the fact that the
transmission map shows a �ve-fold symmetry.

� The transmission map shows a big crown-shaped hole of transmission, and thus a
region of very weak modulation, that makes it necessary to change the baseline
in orbit. This is particularly important for spectroscopy, to get a more uniform
spectral coverage since the scale factor of the transmission map is proportional to the
wavelength �.
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Figure 3.10: Transmission map of the circular array (left) and of the elliptical array (right)
projected on the sky. The central symmetry of the map is broken, leading to easy distinction
between the signals emitted by an exo-planet and by the exo-zodiacal light. Transmission
curves are drawn for transmission ranging from 20% to 100% of maximum (coordinates in
mas, observation wavelength 10 �m and array radius of 15 m).

Five telescopes on an ellipse

In the same article, the authors propose an improvement of the circular array, based on an
elliptical con�guration. In fact, any con�guration keeping the same �k and deduced from
the circle by a geometric a�nity (e.g. by contraction along any direction) still works.

The elliptical con�guration shows an irregular transmission map that permits the exact
localization of the planet, since we can recognize between the �ve maxima in the trans-
mission map (see �gure 3.10). Moreover, azimuthal holes are not present any more if the
array is rotated around its center, and every angular separation has a good amplitude of
modulation6. Thus there is no more need for a variable baseline.

But a new problem arises with this con�guration: since the telescopes are situated at
di�erent distances from the recombining hub (at the center of the ellipse), continuously
variable long delay lines are required to equalize the optical path lengths of the incoming
beams. The requirement of such delay lines is considered to add considerable additional
complexity to the system, and should be avoided unless absolutely necessary. On the other
hand, short active delay lines would probably be needed for all concepts, to facilitate the
search of the fringes on the science object and to compensate for internal (mostly thermo-
elastic) biases (see [34]). Unlike long variable delay lines, short ones do not constitute a
major di�culty.

6The amplitude of modulation is measured by the root mean square of the transmission over a rotation
period, see [40] for details.
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General conditions to get an asymmetric interferometer response

As we have just seen, non-real entrance pupils seem to give transmission maps without
central symmetry. In appendix A, we prove7 that, for con�gurations with more than two
telescopes:

� Real generalized pupils always lead to centro-symmetric transmission maps.

� As expected, non-real pupils generally lead to non-symmetric maps. However, in
several particular cases, they can also yield centro-symmetric transmission maps, but
these special con�gurations seem inappropriate for nulling (see appendix A).

This is an important result, which will be used many times in the following developments.
Other important information can be deduced from analytical developments: if the tele-

scopes are restricted to lie on a circle (in order to avoid long delay lines), and if a �4 starlight
suppression is needed, then an asymmetric transmission map cannot be obtained with less
than �ve telescopes (see appendix B). That is the reason why asymmetric transmission
maps with 3 or 4 telescopes on a circle have never been found. It also means that, besides
linear arrays and other special con�gurations where long delay lines could be avoided, �ve
telescopes are needed to perform a secure detection of Earth-like planets with a nulling in-
terferometer. We will later see that this statement remains almost true (for other reasons)
when using internal modulation.

3.2.4 The need for chopping

Besides rotation of the array, which provides slow modulation of the planetary signal
versus other contributors, we shall use an additional level of modulation, a technique called
�chopping�, to modulate the desired planetary signal in presence of varying backgrounds
and detector drifts. As already mentioned in section 3.1.2, long term instability of the
background over typical periods of an hour reduces the interferometer's sensitivity, unless
the rotation period of the array is much smaller than the typical timescale of background
drifts.

If the desired signal can deliberately be modulated (chopped) at a frequency that no
other signal is likely to mimic, then a chopped planet signal will systematically average
to a steady value while the drifts will tend to average to zero. In practice, the chopping
frequency is set by the minimum readout time of the detector, such that the readout noise
remains much smaller than the detected photon �ux. Frequencies are therefore generally of
about 0.1 to 0.01 Hz. This will also greatly relax the constraint on the rotation frequency
of the interferometer.

Chopping has long been used in infrared and radio ground-based astronomy. The
principle of the technique is to rapidly alternate between the observations of the stellar
source and of the background. It is well suited to image objects fainter than the thermal
background. The trick is to point alternately the star and a nearby sky position, by
periodically tilting one of the mirrors (generally the secondary or the tertiary mirror). The
background can then be properly subtracted from the scienti�c data.

7This demonstration is inspired from a fruitful discussion with Bertrand Mennesson.
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In the case of a nulling interferometer, if we cease to point the star, the central dark
fringe will not occult the star any more, and a large amount of starlight will therefore be
detected. An easy measurement of the background cannot be achieved the same way as in
classical infrared observations.

However there are a number of con�gurations for an interferometer that can be used to
provide both nulling and chopping. The principle is to use two (or more) subsets of nulling
interferometers, and combine them is such a way that the point-like planetary signal is
strongly modulated whereas the extended background sources are not. In the following
discussion, we will focus on a particular way to achieve both nulling and chopping: the
so-called internal modulation.

3.2.5 Internal modulation

Principle of internal modulation

We have discussed two ways to improve the extraction of the planetary signal from other
unwanted sources: external modulation (rotation of the whole array) performed with an
asymmetric transmission map8, and chopping. However, �classical� chopping does not
seem appropriate for nulling interferometry and until 1997, the only modulation level was
physical rotation of the array, with two main drawbacks:

� Reduction of the observation time, since a lot of time is spent in rotating the array.

� Impossibility to modulate the planet signal at a high frequency, which is necessary
to compensate for �uctuations in background levels.

To overcome those main problems, we must possibly avoid any physical rotation of the
array. That is the purpose of internal modulation. The basic idea is to apply a variable
phase shift between the nulled outputs of two interferometric sub-arrays (e.g. Bracewell,
Angel Cross, DAC, GAC, : : : ), recombine them and make the detection. This modulation
is called internal because it only takes place at the recombination of the beams. Although
double arrays9 were already considered by Woolf and Angel [59], the principle of internal
modulation and its practical implementation were proposed by Jean-Marie Mariotti10 in
1997, and published in 2000 by Mennesson and Léger [39].

An analysis based on Fresnel complex amplitude vectors, proposed by Mennesson and
Léger [39], shows the e�ect of such a variable phase shift �im(t) for the case of two Bracewell
sub-arrays (see �gure 3.11). When the two outputs are nulled (e.g. for an on-axis source),
the total output is also nulled, whatever the value of �im(t). But when the two outputs
are constructive (e.g. for a well located planet), the total output varies between zero (for
�im = �) and a maximal value equal to the sum of the two outputs (for �im = 0).

8Note that a necessary condition to get an asymmetric map is that some of the phase shifts �k are
di�erent from 0 or �, which is still a technical challenge (see section 3.4.4).

9Double arrays consist in two paired linear arrays close together with their elements interdigitated.
10Jean-Marie Mariotti suddenly died in July 1998. He was deeply involved in the space exo-biology

missions currently under study: Darwin in Europe and TPF in the United States.
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Figure 3.11: Principle of internal modulation illustrated with two Bracewell sub-arrays
(from Mennesson [37]). For an on-axis source, both Bracewell outputs are null, so that the
combination of these is also null and not modulated. On the other hand, an o�-axis source
located on a constructive fringe for both Bracewell interferometers is strongly modulated,
with the same period as the variable phase shift �im(t).

Thus, the signal of an o�-axis planet is internally modulated as �im(t) varies, with a
modulation amplitude depending on the planet's projected location. Since this process can
be done at high frequency (typically 0.1 Hz), it achieves both modulation and chopping in
one single process, without any physical rotation of the array (note that in practice, several
small rotations will anyhow be required).

Recombination of two sub-arrays

The two following paragraphs are based on the work of Mennesson ([37], [38]).
We consider here the recombination of two nulling interferometers with a time variable

phase shift �im(t). Let A1(~�) and A2(~�) be the complex amplitudes of the electric �eld
transmitted by each of the two sub-nulling interferometers, originating from a common
point source located at an o�-axis position ~� from the star. The intensity detected on one
side of the beam-combiner is proportional to:

S12(~�) =
1

2
jA1(~�) + ej�im(t)

A2(~�)j2 ; (3.11)

where the 1/2 factor comes from the equal division of the signal between the two outputs
of the beam-combiner. We will always assume beam-combiners without loss, so that the
other output intensity is simply S21 = S12(�im(t) + �).
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Developing the previous equation, we get

S12(~�) =
1

2
jA1(~�)j2 + 1

2
jA2(~�)j2 + jA1(~�)jjA2(~�)j cos(�im) cos(argA1(~�)� argA2(~�))

+jA1(~�)jjA2(~�)j sin(�im) sin(argA1(~�)� argA2(~�)) : (3.12)

We immediately see that the �rst two terms are not modulated, and do not contribute
to the synchronous detection. This ine�ciency of internal modulation is one of its main
limitations.

Distinction vs. exo-zodiacal signals

Let us assume a centro-symmetric exo-zodiacal light emission, that is the approximation of
an homogeneous dust distribution seen with an arbitrary inclination i. The overall signal
due to such an extended centro-symmetric source can be written as a sum of terms like
S12(~�) + S12(�~�).

Now, if the generalized entrance pupil of each sub-nulling interferometer is real, equa-
tion (3.2) gives A1;2(�~�) = A1;2(~�), so that argA1;2(�~�) = � argA1;2(~�). Since the sine is
an odd function, the sine contribution in S12(~�) + S12(�~�) will cancel out, and the overall
detected signal is then:

S12 / a+ b cos(�im(t)) ; (3.13)

where a and b are real constants.
According to the last equations, the useful part of the modulated signal, speci�c to a

planetary point-like source, is given by:

jA1(~�)jjA2(~�)j sin(�im) sin(argA1(~�)� argA2(~�)) : (3.14)

This shows that, by setting �im(t) alternatively to ��=2, not only is the modulation e�-
ciency (3.14) maximal for the planetary signal, but also the exo-zodiacal light not modu-
lated at all! Since a 50:50 beam-combiner theoretically introduces an achromatic �=2 phase
shift between the two input beams on one output, and��=2 on the other (see section 1.2.3),
the time-varying phase shift can be achieved by alternately detecting the two outputs of
a single beam-combiner whose input beams are A1 and A2. In the following discussions,
these two outputs will be referred to as S12 (with �im = �=2) and S21 (with �im = ��=2).
With these notations, the de�nition for modulation e�ciency reads:

jS12 � S21j
Imax

=
2 jA1(~�)j jA2(~�)j

Imax
j sin(argA1(~�)� argA2(~�))j ; (3.15)

where Imax represents the maximum detectable intensity coming from the planet (propor-
tional to the overall collecting area). Note that this e�ciency is zero if both A1 and A2

are real, or if any of the sub-nulling interferometers provides a null response at ~�.
The two signals S12 and S21 can either be detected alternately on a unique detector,

or continuously detected on two separate detectors. In the last case, two high frequency
chopped signals can be constructed, depending on the alternation �S12 � S21 � S12� or
�S21 � S12 � S21� (see �gure 3.12). When demodulated, these two signals are completely
equivalent. This redundancy improves the SNR by a factor

p
2, but it forces to use two

detectors instead of a single one.



Chapter 3. Nulling interferometry � Darwin 51

� �

� � $ � � � 	 �

� � � � � �� � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � �

� � $ � � � 	 �

Figure 3.12: Two signals are constructed with outputs S12 and S21. Only the useful pla-
netary part of S12 and S21 is represented here. Background signals are much larger than
the planet signal, but are not modulated at all since they have the same value in the two
outputs. Note that the time variation of the original planet signal is much slower than the
modulation period.

3.3 Current con�gurations with internal modulation

In this section, the principle of internal modulation is illustrated with some important
examples.

3.3.1 The Mariotti nulling interferometer

The Mariotti con�guration consists of six identical 1.5 m telescopes arranged on an equi-
lateral triangle located at 1 AU from the Sun (at the L2 Sun-Earth point). It uses internal
modulation between three DAC sub-arrays (�gure 3.13). It has been studied in detail by
Mennesson and Léger [39], following an original idea from Jean-Marie Mariotti.
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Figure 3.13: Geometry of the Mariotti nulling interferometer. Dotted lines indicates tele-
scopes which are shared between adjacent sub-arrays. Note that the area ratio is 1:2:1 for
each DAC, so that the diameter ratio is 1:

p
2:1, in agreement with the remark on DAC's

recombination (section 3.2.2). The recombination scheme of �gure 3.8 is used for each
individual DAC with equal size telescopes and 50:50 beam-splitters behind each summit
telescope.

In that con�guration, the telescopes of each DAC are recombined to produce a nulled
output with ��4 rejection. These nulled outputs are then recombined by pair, with a
variable phase shift �ij(t) for the (i; j) pair.
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This con�guration has been further investigated by Alcatel Space [34]. It was found
during the study that the 3-DAC concept su�ered from the need for either long delay lines,
or complex optical paths. These considerations led to the proposal of a modi�ed 3-DAC,
referred as to the �3D Mariotti� concept (see �gure 3.14) in which an additional central hub
is used for beam combination, and the free �yers are arranged in di�erent planes. With that
con�guration, long delay lines are not required any longer, and the beam transfer optics is
simpli�ed. Unfortunately, the 3D con�guration was found to su�er from thermal coupling
due to the radiation from the sunshields of the upper-plane telescopes (see Thomas [54]
p.92 for a complete discussion). That is the reason why non plane con�gurations are not

considered any longer.
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Figure 3.14: 3D Mariotti combination scheme. The six telescopes are lying on a paraboloid,
the focus of which is occupied by the central hub.

3.3.2 The Robin Laurance nulling interferometers

As de�ned by Anders Karlsson [24], we shall refer to a Laurance interferometer when the
following conditions are satis�ed:

- All telescopes are at equal distances from the beam-combiner spacecraft (no long
delay line required),

- All telescopes are in one plane (perpendicular to the line-of-sight),

- Star light suppression is proportional to �4 (or better),

- All the telescopes are of the same diameter, but possibly seen with di�erent trans-
mission e�ciencies at the recombination stage,

- Internal modulation is applied between at least two sub-nulling interferometers, with
a ��=2 time variable phase shift,

- The only achromatic phase shift applied within a given sub-nulling interferometer is
0 or �.
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The di�erent solutions are referred to as RLx(m1,m2, : : : ,mn) where x is the number of
sub-arrays (generally GACs), n is the number of telescopes and mi the relative telescope
size, starting with the largest telescope.

In the following paragraph, a complete study of RL3(3,2,0,1,0,2) is given. This hexago-
nal con�guration has been designed by the ESA Darwin study manager Karlsson (see [24])
and further studied by Mennesson [38].

The RL3(3,2,0,1,0,2) con�guration

It is the �rst con�guration of the RL family. The good nulling properties of this con�gu-
ration have rapidly been recognized, and this recombination scheme has been selected as
a baseline for the current Darwin study. The RL3(3,2,0,1,0,2) has been fully studied by
B. Mennesson [38]. The principal results are presented below, and will serve as a reference
for the following discussions.
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Figure 3.15: The RL3(3,2,0,1,0,2) interferometer and its three sub-nulling arrays with their
generalized entrance pupils.

Figure 3.15 shows the geometry of the array and the three sub-nulling GACs that
compose it. Let L be the radius of the circle with the six telescopes, and let us de�ne the
reduced coordinates

x =
2�L� cos�

�
; y =

2�L� sin�

�
; (3.16)

u =
2�L� cos(2�=3� �)

�
; v =

2�L� cos(4�=3� �)

�
: (3.17)

Using the recombination scheme proposed by Karlsson and Mennesson, the intensities
detected on the three GACs nulled outputs, resulting from the interference of four light
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beams, are

IGAC1 =
I0
36
j � 2ejx + 3e�jv � 2eju + ejvj2 ; (3.18)

IGAC2 =
I0
36
j � 2eju + 3e�jx � 2ejv + ejxj2 ; (3.19)

IGAC3 =
I0
36
j � 2ejv + 3e�ju � 2ejx + ejuj2 ; (3.20)

where I0 is the overall intensity seen by each telescope, including re�ection loss and detector
quantum e�ciency. The recombination e�ciency of any GAC is 8/9, corresponding to the
maximum of IGAC1=2I0, where 2I0 is the maximum intensity theoretically detectable on
one GAC output.

The transmission map of GAC1 is shown on �gure 3.16. All plots are for a wavelength
of 10 �m and a baseline of 30 m (i.e., the distance between any telescope and the beam-
combiner is 15 m). The �eld of view is 500�500 mas (i.e., 500 mas in diameter). These
are the same values as in [24] and [38], in order to allow simple comparisons. Note that the
30 m baseline is well suited to detect habitable planets, which are typically 80 mas away
from a star located at 10 pc from Earth11.

Figure 3.16: Transmission map of GAC1 on the sky. Field of view is 500�500 mas,
interferometric array radius 15 m, and observing wavelength 10 �m.

When recombining the nulled outputs of GAC1 and GAC2 on a lossless beam-splitter,
assuming �im = ��=2 as explained in paragraph 3.2.5, we obtain the two complementary
outputs S12(�im = �=2) and S21(�im = ��=2) shown on �gure 3.17. The modulation

11The apparent projected distance between an Earth-like planet and its host star is actually unknown.
The probability of �nding a planet at a projected distance smaller than x times its true orbital radius is
computed in [39]. Its is proven that 80% of the cases are between x = 0:6 and x = 1. Consequently, the
typical angular separation of a Sun-Earth system at 10 pc is 80 mas.
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e�ciency (3.14) between GACs 1 and 2 is de�ned as the useful planetary part of the
signal, and given by jS12�S21j=2I0. The total modulation e�ciency for the three GACs is
�nally de�ned as the mean of the modulation e�ciencies for the three pairs of GACs:

jS12 � S21j+ jS13 � S31j+ jS23 � S32j
6I0

: (3.21)

That expression yields the following values:

� Mean modulation e�ciency: 0:121, this is the relevant �gure when the planetary
location is unknown (detection phase).

� Maximum modulation e�ciency: 0:299, this is the relevant �gure once the planet
has been detected and located. It is then possible to optimize the array size and
orientation for spectroscopy at a given wavelength, with this e�ciency.

� RMS of the modulation e�ciency over the �eld of view: 0:102.

The modulation e�ciency map is illustrated in �gure 3.18. This map shows azimuthal
directions of null modulation e�ciency. At any wavelength, a source with that particular
azimuth is undetectable, since its signal is not modulated at all. To overcome this problem,
it is mandatory to rotate the array, which will make the sky coverage more uniform.
Figure 3.18 shows the improvement of the sky coverage obtained by using for instance three
di�erent array positions, deduced from three 20Æ successive rotations. Thus, �azimuthal
holes� have a bad in�uence since rotations are once again needed, but this is far less
harmful than the continuous rotation needed when no internal modulation is used (see
section 3.2.3). So, a secondary goal in the following study is to reduce the number and
amplitude of rotations. Note that this kind of azimuthal holes are also present in the
Mariotti con�guration.

Other RL con�gurations

Three other RL con�gurations have already been studied: two of them are hexagonal and
the last one has an irregular pentagonal shape. The most promising of them seems to
be the RL2(0.70,1,0.84,0.54,0) pentagon. All those con�gurations will be described in the
following chapter, and compared with the previous case.

3.3.3 Linear con�gurations

The TPF mission concept

Before describing the linear con�gurations, let us brie�y present the Terrestrial Planet
Finder (TPF) mission. This future NASA mission has exactly the same goals as Darwin,
and uses the same technique (infrared nulling interferometry). So, there is a strong re-
semblance between these two missions, which could �nally lead to a common international
mission.

As for the Darwin mission, the �rst concept for TPF did not use internal modula-
tion, and an orbit located at 5 AU from the Sun was selected in order to avoid thermal
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Figure 3.17: Transmission map of nulled output of GAC1 recombined with nulled output
of GAC2, with a phase shift of �=2 (left) and ��=2 (right). Conversely to the transmission
map of an individual GAC, these maps are asymmetric.

Figure 3.18: Left: modulation e�ciency map. Right: mean modulation e�ciency when
superimposing three maps obtained by 20Æ successive rotations. Note that azimuthal di-
rections of zero modulation are not present any more.
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background from the zodiacal dust in our own solar system. The basic concept was a
4-telescope linear array dubbed OASES, yielding a ��6 rejection rate (see appendix C.2.2).
This con�guration comes from the superposition of two Bracewell interferometers with dif-
ferent spacing, whose outputs are combined with a 180Æ phase shift (see �gure 3.19). The
rotation of the array around the line of sight is then used to modulate the �ux from an
o�-axis point-like source.

� �

� �

� �

� �

� �� �

Figure 3.19: Schematic diagram of a 4-element linear nulling interferometer, adapted
from [3]. The �xed beam-combining geometry is con�gured to give equal path lengths
for all the four telescopes. The responses of the inner and outer pairs pass through zero
on the median plane with equal and opposite slope, cancelling to high order (��6 rejection
rate).

Evolution of the concept

The implementation of TPF has evolved in three ways (see [9]):

� Since large light-weight apertures are being developed for the NGST, it is now reaso-
nable to consider using large apertures (about 3 m in diameter) for an interferometer
operating in the higher background conditions at 1 AU.

� Using free-�ying interferometer elements is now considered rather than a connected
system of telescopes. It has the big advantage to enable the tuning of the baseline
for each planetary system.

� In order to minimize the e�ects of long-term detector drift, and to reduce the need
for rapid rotation of a free-�ying constellation, more complex interferometer con�gu-
rations using path length modulation and rapid chopping are being considered.

The �rst proposition for placing two nulling arrays close together, with their elements
interdigitated is due to Woolf and Angel [59]. Their main goal was to eliminate the imaging
ambiguity of 180Æ which tampers the usual linear con�gurations, and by the way, to cancel
the exo-zodiacal emission. This can be done by combining the null outputs of the two
sub-nulling arrays with an achromatic phase di�erence of 1/4 wave. The evolution of
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Figure 3.20: Dual linear nulling arrays (taken from [29]). Pairs of nulling interferometers
can be combined in various ways to allow the rejection of unwanted noise sources.

this concept lead to a number of linear con�gurations with interlaced linear sub-arrays,
summarized in �gure 3.20.

The current baseline for TPF is a 4-telescope linear array called OASES, which could
be used as a single nulling interferometer with a ��6 rejection rate, or as a double DAC
interferometer with internal modulation.

3.4 Feasibility of the Darwin mission

3.4.1 Observation strategy

Before proving the feasibility of the Darwin mission, an observation strategy must be
chosen. The choice of the orbit is particularly important because it has a great in�uence
on the noise level.

Choosing the orbit

We have seen in section 3.2.2 how the 1993 proposal of a 5 AU orbit has �nally made the
Darwin concept technically achievable (with 1.5 m-class telescopes instead of 8 m-class
ones). But it was soon proven that such a distant orbit would be unrealistic for theDarwin
mission because of insu�cient payload mass capability and excessively long travel times.

Recently, the 1 AU orbit (at the Sun-Earth L2 point) has been re-evaluated, in the
light of new elements:

� The advances in large cryogenic optics resulting from NGST enable the 1 AU mission
to match the S/N of the previously studied 5 AU mission while simplifying many
aspects of the mission design, particularly power systems.

� The actual brightness of the zodiacal cloud has been recalculated based on the latest
dust models, and a decrease by a signi�cant factor (about 4 at 10 �m) has been
found.



Chapter 3. Nulling interferometry � Darwin 59

� The 1 AU orbit decreases the orbital period, providing multiple opportunities to view
each target over the lifetime of the mission, and drastically reduces the time required
for Darwin to reach its operational orbit and begin taking science data.

These advances should allow the use of 1.5 m telescopes at a 1 AU orbit, as will be proven
hereafter. Moreover, as stated by Woolf et al. [61], if other planetary systems have more
dust emission from the 1 AU range than our solar system, then an interferometer at 5 AU
would require greatly increased observing time, or increased telescope size. And indeed, if
exo-zodiacal dust was much brighter than the solar system dust emission at 1 AU, mirrors
of the same size would be needed whether Darwin (or TPF) was at 1 AU or 5 AU.

Observation sequence

A possible observation sequence is proposed in [39]. It consists in two successive phases:

� Detection phase. All spectral bins will be used simultaneously for detection. The
global detection e�ciency is therefore the mean value of the modulation e�ciency
averaged on azimuthal position and wavelength, weighted by source spectrum and
wavelength dependence of quantum detector e�ciency. Optimizing the interferometer
baseline for detection of a potential Earth-like planet yields a modulation e�ciency
of about 12% when the RL3(3,2,0,1,0,2) con�guration is used.

� Spectroscopic phase. Once the planetary location is known, the baseline and orienta-
tion of the array can be chosen to yield the maximum modulation e�ciency (29.9%),
at a selected wavelength, during spectroscopy.

3.4.2 Signal-to-noise calculations

The following calculations are largely based on a series of documents including the Dar-
win and TPF reports ([18] and [9]), papers from Mennesson and Léger [39], Beichman
and Velusamy [8], and Thomas' thesis [54]. All the calculations are carried out for the
RL3(3,2,0,1,0,2) con�guration with an array radius of 15 m and a observation wavelength
of 10 �m. A Sun-Earth system at 10 pc is assumed as a typical target. Note that in prac-
tice the radius of the interferometer has to be larger than 25 m in order to avoid thermal
coupling between the satellites. A value of 15 m has been used throughout this work for
reasons of easy comparison with previous results. This does not signi�cantly change the
conclusions of this work since observing an exo-system from 10 pc with an array radius
of 15 m is completely equivalent to observing the same exo-system from 16.6 pc with an
array radius of 25 m.

The planet signal

In order to calculate the planet signal, some scienti�c constraints must �rst be evaluated.
The spectral range stretches from 6 to 18 �m in order to comprise the H2O, CO2 and O3

spectral signatures (see �gure 3.21). The spectral resolution R varies between 1 (detection
phase) and 20 (O3 spectroscopy at 10�m). The minimum signal-to-noise ratio (SNR)
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allowing planet detection is about 5, while O3 analysis needs a SNR of about 10. These
values are taken from the Darwin study report [18]. Our goal is here to show that the
required SNR can be reached in a reasonable time in these two limiting cases.

Figure 3.21: The Earth's spectrum as it would appear observed with Darwin from a
distance of 10 pc, and with a spectral resolution R = 20. This resolution allows the
detection of the O3 spectral signature.

Let us �rst compute the planet signal detected by Darwin after synchronized demodu-
lation of the interferometer outputs. Denoting � the modulation e�ciency, the expression
of the planet signal in photo-electrons per second (ph-e�/s) reads

Qp = 6�S
���

h�
F�;p ; (3.22)

where the factor 6 accounts for the six telescopes with surface S, � ' 0:139 is the instru-
mental e�ciency12, �� the bandwidth of the observation and h� the quantum energy
at observing frequency �. The �ux F�;p from an Earth-like planet at 10 pc is 0.34 �Jy
(see [8]). Writing this expression, it has been supposed that the output signals Sij are all
continuously detected on separate detectors, in order to obtain an optimum SNR ratio.

The noise contributors

As we have seen in section 3.2.5, the use of internal modulation at a frequency around 0.1 Hz
reduces low frequency drifts of the background: the noise signals (physical background,
detector response, stellar leaks, interferometer thermal emission) have a zero mean value
but �nite standard deviation after synchronized demodulation. In order to compute this

12The instrumental e�ciency includes optical transmission Tr ' 33%, detector quantum e�ciency
QE ' 65% (SiAs detector) and �eld stop coupling e�ciency 65%, so that the global e�ciency is 0.139
(values from Karlsson, personal communication).
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standard deviation, the amount of light from each background source coming through the
null of an individual GAC must be computed. The noise at each GAC output is simply the
standard deviation of the mean �ux. The useful signal Sij(t) (from which the background
�ux is cancelled by demodulation) is obtained by combining the outputs of two GACs i
and j with a time varying phase shift �ij(t). It can be easily proven that the noise is not
a�ected by this coherent beam-combination: the level of noise associated to the detected
signal Sij(t) is the same as the noise at each GAC output.

There are three types of noise contributors: the �rst type is associated to the inter-
ferometer's location (local zodiacal light, galactic cirrus), the second type to the observed
star (stellar leaks, exo-zodiacal light) and the third type to the instruments (thermal emis-
sion of the interferometer, detector noise). Their contribution to the total noise is computed
hereafter.

� Local Zodiacal Cloud. The contribution of the local zodiacal cloud is proportional
to the �eld stop optical étendue S
 (where S is the area of a telescope and 
 the
solid angle of the �eld). The �eld stop was �rst design for spatial �ltering (see
section 3.4.3), with an optical étendue 3.7�2 de�ned by the �rst dark ring in the Airy
pattern of the point spread function. Now, when the diaphragm radius � is reduced
from the �rst Airy zero, the �ux from the Airy pattern �rst decreases slowly whereas
the �ux from the uniform zodiacal source decreases as �2. An optimum SNR is found
for S
 = 1:096�2 (see [18]). If R(�; �) represents the response of an individual GAC
(see equation 3.4), the contribution in photo-electrons per second (ph-e�/s) from the
zodiacal cloud to an individual GAC output is13

QLZ =
���

h�

Z Z
B�;LZR(�; �)� d� d� : (3.23)

The latest dust models give a mean value of B�;LZ = 6:19 MJy/sr at 10 �m over the
Darwin observation cone (see [18]).

� Infrared Cirrus. The galactic infrared cirrus is an additional background against
which Darwin must observe. It has the same expression as the local zodiacal light.
A surface brightness of 0.08 MJy/sr is assumed in the following calculations (see [54]).

� Background Confusion Noise. This contribution, due to star and galaxy infrared
emission, will not be an issue at the high spatial resolution of Darwin (see [9]).

� Exo-Zodiacal Emission. In order to estimate the contribution of exo-zodiacal light to
the photon noise, we use a model developed by Good (see Thomas' thesis [54]), based
on the IRAS survey of the solar system zodiacal dust. In that model, the zodiacal
cloud is considered as a grey body with emissivity "(r) = 1:114 � 10�7r�0:8, where
r is the distance from the star in AU. The dust equilibrium temperature is given by
T (r) = 266 r�0:36 K. Multiplying the black body brightness by the grey emissivity,

13Note that the number of telescopes and their collecting area are now included in the GAC response
R(�; �).
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we obtain the exo-zodiacal cloud surface brightness:

B�(r) = "(r)
2hc2

�5
1

exp( hc
�kT (r)

)� 1
W/m2/m/sr : (3.24)

The exo-zodiacal cloud contributes photon noise to the total signal starting at the
dust sublimation radius and extending out to the edge of the primary beam of a single
telescope. The dust destruction temperature is about 1500 K, so that the sublimation
radius is 8:2� 10�3 AU. Moreover, due to the interferometric transmission map, the
hot inner part of the exo-zodiacal cloud is partially rejected by the interferometer
(see �gure 3.5). The total contribution of the exo-zodiacal cloud at a GAC output
reads:

QEZ =
���

h�

Z Z
B�;EZR(�; �)� d� d� : (3.25)

Note that little is still known about the prevalence of such dust in the target systems
of the Darwin mission. But recently, several nearby main sequence stars were shown
to have warm circumstellar matter at a level > 100 times the solar system value.
Therefore, it appears necessary that the target systems will have to be observed in
advance of the Darwin mission (see chapter 5).

� Leakage Signal. First of all, let us prove that the RL(3,2,0,1,0,2) interferometer, with
a ��4 rejection rate, allows to observe the planet despite the huge star-to-planet �ux
ratio (about 5 � 106). Assuming that the surface brightness of the star is constant
over the whole stellar disk, the rejection rate can be easily evaluated by integrating
the interferometer response over the stellar disk:

� = 2S
��2�R R

star
R(�; �)� d� d�

; (3.26)

where ��2� is the solid angle subtended by the star, and where 2S accounts for the
total collecting area of a single GAC (a third of the overall collecting area). This
rejection rate is about 8:9 � 108 for a Sun-like star at 10 pc, and an interferometer
radius of 15 m as usual. On the other hand, a 30 m-long Bracewell interferometer,
with a ��2 rejection rate, would yield � ' 3:5 � 103, which is obviously insu�cient.
Neglecting surface brightness variations over the stellar disk, the expression of the
stellar leakage signal reads:

Qleak ' ���

h�
B�;star

Z Z
R(�; �)� d� d� ; (3.27)

where the surface brightness B�;star of a Sun-like star is about 1017 Jy/sr.

� Leakage Jitter. An additional noise source comes from wandering of the null across the
star due to variations in pointing of the phase center of the interferometer and to OPD
variations, which make the rejection rate a highly time dependent variable. Large
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leakage �uctuations would be particularly harmful at the typical chopping frequency
of 0.1 Hz. Numerical simulations have proven that the rejection rate remains above
105 for di�erential pointing errors below 2 mas rms and OPD �uctuations below
8 nm rms (see [54]). With these speci�cations, the leakage jitter noise should not be
issue (Karlsson, personal communication). Other limitations to the rejection rate are
brie�y discussed in section 3.4.3. A rejection rate � = 105 is assumed in the following
calculations. The contribution of the stellar leaks at a GAC output �nally reads:

Qleak ' 2S
���

h�
F�;star�

�1 ; (3.28)

with F�;star = ��2�B�;star ' 1:6 Jy at 10 �m.

� Thermal Emission. The equilibrium temperature of the interferometer is calculated
so that the associated thermal emission remains below the local zodiacal light con-
tribution over the whole spectral range. This can be achieved with a telescope tem-
perature of 40 K. Note that this temperature can be reached with passive cooling
if all the telescopes are in the same plane. The contribution of thermal emission is
signi�cant only at the longest wavelengths of the spectral range.

� Detector Noise. The integration time between two consecutive samplings of the
internally modulated signal must be large enough so that the detector readout noise
is signi�cantly smaller than unavoidable noises. Using a readout noise of 10 e� rms,
Mennesson and Léger [39] conclude that a modulation frequency of 0.1 Hz can be used
without noise penalty. This frequency is still much larger than the typical 10�4 Hz
of rotating arrays. Another property of detectors is their dark current idark, which is
expected to be about 5 e�/s (see [8]).

Signal-to-noise ratio and integration time

The total noise is computed in the table below for the two di�erent observation phases.
It is simply the standard deviation of the total counts, i.e., its square root since Poisson
statistics is relevant for photon counts.

Signal and Noise Sources

Signal (ph-e�/s) Detection O3 Spectro
Planet at 10 pc 1.09 0.135
Local Zodiacal Cloud 871.5 43.55
Infrared Cirrus 11.25 0.563
Exo-Zodiacal Cloud 152.4 7.617
Stellar Leakage 94.30 4.715
Dark Current 5 5
Total Counts per sec. 1135 61.58
Noise in ph-e�/s1=2 33.7 7.85
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Now, the last thing to do is to deduce the observation time needed to achieve the
required SNR (5 for detection and 10 for O3 spectroscopy). A SNR of 5 is achieved in
about 2:4 � 104 s for detection, i.e., about 6.7 hours of integration, whereas 3:4 � 105 s
are needed for spectroscopy, i.e., about 94 hours (4 days). These values are relevant for
the typical case of a Sun-Earth system at 10 pc. The evolution of integration time with
respect exo-system distance can easily be computed: assuming that the SNR is limited by
the noise associated with the local zodiacal cloud, it can be written as

SNR / FpD
2tp

�2LZt
(3.29)

where Fp is the planet �ux, D is the telescope diameter and t the integration time. In this
expression, only Fp depends on the exo-system distance d (Fp / d�2). So, for a �xed SNR,
the integration time is proportional to d4, but also to D�4. An increase in the telescope
size would therefore be very bene�cial.

3.4.3 Optical and mechanical constraints

Limitations to the rejection rate

We have proven in the previous section that a rejection rate of order � = 105 is su�cient
to allow Earth-like planet detection. With that value, the leakage noise remains below the
unavoidable noise associated with the local zodiacal cloud. This result has to be translated
into technical speci�cations. This work has been done by M. Ollivier [43], who has identi�ed
three main limitations to the rejection rate. Their in�uence is computed for the case of
a Bracewell interferometer for the sake of simplicity. A conservative value of � = 106 is
chosen for this study.

� Di�erential Phase Errors. If the phase di�erence �1 � �2 between the two input
beams is not exactly equal to �, the on-axis starlight extinction is not perfect. If
we set �2 = �1 + � + ��, the maximum value of the phase error �� that achieves the
minimum rejection rate �min satis�es the following condition:

j��j � 2p
�min

; (3.30)

which gives j��j � 2 � 10�3 rad. This requires high precision optical delays lines,
with accuracies of about 1 nm (see [28], chap. 16). Di�erential phase errors are also
induced by di�erential �tip-tilt� errors between the two telescopes: a maximum error
of Æ� = 1:27� 10�3�=D can be tolerated if D is the telescope diameter (see [37]).

� Relative Beam Intensities. The on-axis cancellation of stellar radiation requires two
input beams of equal intensity. In practice, the equality is not exactly satis�ed: there
is always a intensity error �I such that I2 = I1(1 + �I). The rejection ratio will be
greater than �min if

j�I j � 4p
�min

: (3.31)
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In order to obtain a 106 rejection rate, the maximum allowed amplitude mismatch is
4� 10�3.

� Polarization Errors. Assuming, as Ollivier [43], that the recombination will be sepa-
rately done on each of the s and p polarization states, the polarization plane of the
two incoming beams must be equal to within a maximum error

j��j � 1
4
p
�min

; (3.32)

which gives j��j � 3 � 10�2 in our case. On the other hand, if the two polarization
states are recombined simultaneously, it is critical to avoid e�ects such as �di�erential
birefringence�: di�ering s-p phase delays between the two interferometer arms. The
limit on the allowable di�erential birefringence is 4=

p
�min (see [28]).

Spatial and modal �ltering

The most stringent constraint on wave front quality is certainly the phase constraint. In the
absence of atmosphere, the main phase �uctuations are due to imperfect mirror polishing.
Equaling the two beams' phases everywhere on the pupil to within 2=

p
� imposes that the

wave front distortions are controlled to within �=(�
p
�), i.e., to within �=3100 for a 106

rejection rate (which is equivalent to �vis=220). This wave front quality is de�nitely not
achievable for 1.5 m large mirrors. Another approach is therefore necessary.

The high spatial frequency defects of the incoming wavefronts of the interferometer
can be e�ciently corrected by spatial �ltering for instance using simple pinholes. Ollivier
and Mariotti [44] have shown that by placing a pinhole at the focus of each telescope,
with an optical radius of roughly �f=D (i.e., the size of an Airy spot), the e�ects of dust
scattering or high frequency ripples of polishing residuals can almost be eliminated, since
their contribution to the total PSF is diluted over a large region of the focal plane (due
to a well-known property of Fourier transforms). Spatial �ltering is very e�cient for small
phase defects, because their energy is spread on a large region of the focal plane, but not
for low order defects (tilt, defocus, astigmatism) for which the previous constraints still
apply.

To overcome this problem, the use of a single-mode waveguide has been proposed by
Mennesson et al. [41]. When a single-mode waveguide is used, the incoming wavefront
excites only one mode of the guide, whatever the shape of the entrance wavefront. The
amplitude pro�le of this mode is fully determined by the physical properties of the guide.
The shape of the initial wavefront will only a�ect the amount of energy coupled into the
guide, so that phase e�ects are traded against amplitude e�ects. As a result, all phase
defects of the wavefront besides residual piston (i.e., imperfect OPD control) are corrected.
Qualitatively it is well known that fringe visibility is less a�ected by photometric unbalance
than by phase defects (see section 1.3.1). Indeed, the e�ect of amplitude mismatch on the
mean rejection rate is of second order as compared to phase aberrations (see [41]).

The new constraints obtained in the case of modal �ltering are far more realistic, and
considerably improve the mission feasibility. In order to get a 106 rejection rate, the
optical surface quality drops from �vis=220 rms to �vis=3 rms, and the pointing accuracy
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from 1.2 mas rms to 38 mas rms. Note that, if amplitude mismatching was corrected in real
time14, then the expected rejection rate would only be limited by polarization mismatches
in the optical train. Polarization e�ects could therefore well set the ultimate limit to the
rejection rate. A detailed analysis of imperfections can be found in Wallner et al. [56], and
symmetry requirements in Serabyn [51].

3.4.4 Technological challenges

Two main items require technological developments: interferometric nulling and control
of spacecraft �ying in formation. Both are under development for ground observation or
precursor missions, but will also require some speci�c development. In this section, some
technological challenges related to interferometric nulling are brie�y discussed (based on
the Alcatel IRSI-Darwin study [34]). Formation �ying will not be described here (see [30]
for more information on this topic).

Optical components

� Dichroic mirrors, beam-splitters and compensating plates. Precise manufacturing
control of these components is essential in order to achieve the required uniformity of
transmission and phase delay for both polarizations, over the full spectral bandwidth
and at cryogenic temperatures.

� Mid-IR integrated optics and monomode optical �bers. Suitable monomode wave-
guide, capable of covering the full spectral bandwidth of Darwin (6 - 18 �m) with
acceptable losses do not yet exist. An overview of technological possibilities is given
in [37] (chap. 7). Modal �ltering could be achieved with �long holes�, hollow guides,
integrated optics components or optical �bers. Monomode �bers are already used till
5 �m with attenuation below the dB/m level.

� Polarizing components. Thin polarizing and birefringent elements will be required
with high transmission e�ciencies across the whole spectral range.

Achromatic phase shifter

As we have seen, depending on the use of internal or external modulation, phase shifts
equal to � rad or to a fraction of � are required. In any case, the phase shift to perform
must be achromatic so as to preserve the full e�ciency of the interference process over
the whole spectral bandwidth. If this is not the case, the destructive interference is not
complete and some light from the parent star is not suppressed, which could prevent the
planet light from being detectable. Therefore an approach based on simply inserting an
extra optical path between waves is not relevant, and dedicated systems must be used. Let
us brie�y present some achromatic phase shifting devices currently under study or test,
which could achieve the required 2� 10�3 rad phase precision over the whole bandwidth.

14This can be achieved by attenuating one of the beams by a polarizer, or by slightly tilting one of the
wavefronts at the entrance of the waveguide.
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� Dispersive materials. The wavelength dependence of a half wave optical delay can
be matched by adding optical path length through a dielectric medium, such as a
glass plate. This technique has been described and tested by Morgan and Burge [42].
The resulting phase di�erence as a balanced linear component and a second order
curvature due to the wavelength dependent index of refraction of the dielectric mate-
rial. A second dielectric material can be used to balance the second order curvature,
yielding residual phase errors with third order curvature. The phase error could be
further reduced by adding additional plates, but two dielectric plates seem to be
su�cient. Mid-infrared observations of circumstellar environments have been carried
out by Hinz et al. [21] using that technique with two co-mounted telescopes of the
Multiple Mirror Telescopes.

� Birefringence. This approach uses a set of plane parallel plates made of birefringent
crystal and cascaded along the propagation axis, and oriented perpendicular to it.
The principle is to perform a sequence of polarization changes, each providing a
chromatic phase shift but each being di�erent from the other (see [48]).

� Focus crossing. A beam crossing a focus is achromatically shifted by �, with respect
to a parallel beam following an equal optical path. Nulling can be achieved with a
two-aperture interferometer using this dephasing property in one arm, by means of
a cat's eye device. This technique has been validated with the �Achromatic Interfero
Coronagraph� (see section 2.3.4). Note that splitting the focus in two sub-foci (by
means of cylindrical mirrors for example) can be used to achieve a �=2 achromatic
phase shift (see [48]).

� Field �ip. The use of two orthogonal rooftop mirrors in one arm of a Michelson
interferometer can be used to create a � achromatic phase shift between the two
interfering waves. A �rotational shearing interferometer� based on this technique has
been devised by Serabyn [52]. The advantages of this technique include a reliance
solely on �at mirrors, near-perfect symmetry with respect to the two polarizations,
and insensitivity to the beam-splitter's exact re�ection/transmission ratio (because
it is used in double pass). The best null depth obtained with a laser-diode source
is 8 � 10�6, while a transient null depth of 2� 10�4 has been achieved on a �ltered
white-light source of 8% bandwidth.

� Total re�ection. This new approach is based on the dephasing properties of total
re�ection, and uses, on each interferometer arm, a couple of isosceles prisms having
unequal refractive indexes (see [48] for details).

Other optical sub-systems

Some other optical sub-systems will require technology development e�orts in the coming
year in order to raise their performance to a level compatible with the mission requirements
(see [34]). These include:

� the fringe sensor, which should be capable of sensing variations of external OPD with
an accuracy of 0.75 nm at a frequency of 10 Hz,
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� the �ux matching device, whose performance has still to be evaluated,

� the delay lines, which are likely to require considerable development work before they
can achieve the expected performance and reliability levels on a remote space-borne
system operating at 40 K,

� the laser metrology system, which is required to stabilize the drift in di�erential OPD
between pairs of telescopes and the beam-combining hub, and to enable the fringe
sensor to detect fringes in the vicinity of the interferometric null condition.



Chapter 4

Further exploration of the Darwin
aperture con�gurations

In this chapter, a systematic study of the Darwin aperture con�gurations is undertaken.
A special interest is given to con�gurations with internal modulation, and particularly to
RL con�gurations. The maximum number of telescopes will be limited to six, for obvious
reasons of cost and complexity, and because of the limited room in an Ariane 5 fairing.

4.1 RL con�gurations with �ve telescopes

Before studying RL con�gurations1 with �ve telescopes in detail, let us prove that it is the
minimum number of telescopes required to perform internal modulation, if the telescopes
are restricted to stand on a circle (at equal distances from the beam combiner). This fact
has already been proven by Mennesson [38].

� Three telescopes: as proven in appendix C.1, there is no con�guration with three
telescopes on a circle allowing a �4 null. So, RL con�gurations with three telescopes
cannot be constructed.

� Four telescopes: as proven in appendix B.2.2, for any given distinct positions of the
four telescopes, there is one, and only one, set of amplitude coe�cients ensuring a �4

null at the recombination stage. So, there cannot be any internal modulation with
four telescopes since two subsets of four telescopes are needed.

4.1.1 Modulation between two GACs

Let us �rst consider two sets of four telescopes (GACs), three of them being common to
the two sets. An in�nity of solutions exists since for each telescope position (i.e., for each
set of polar angles Æk), we can �nd a couple of GACs with three common telescopes.

This case has already been fully studied by Mennesson [38]. The calculations and
results are summarized below, because they lead to important conclusions. All plots in

1see section 3.3.2 for the de�nition of a RL con�guration

69
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this chapter are for a wavelength of 10 �m and a baseline of 30 m (i.e., the distance between
any telescope and the beam-combiner is 15 m). The �eld of view is 500�500 mas (i.e.,
500 mas in diameter). These are the same values as in [24] and in chapter 3, in order to
allow simple comparisons.

Equal size telescopes

This case is of practical importance, since the manufacturing of �ve telescopes with equal
size will signi�cantly reduce the costs. Mennesson has proven in his report [38] that one
and only one set of amplitudes allows telescopes of equal sizes. Denoting �k the amplitude
associated with telescope k in GAC1, and �0

k the amplitude associated with telescope k in
GAC2, this (normalized) set of amplitudes writes:

�1 = 1=
p
2 = 0:707 ; �2 = �1 ; �3 = k = 0:838 ; �4 = �

p
1� k2 = �0:546 ; �5 = 0 ;

�0
1 = 0:707 ; �0

2 = 0 ; �0
3 = �0:546 ; �0

4 = 0:838 ; �0
5 = �1 : (4.1)

These are exactly the amplitude coe�cients of the RL2(1,0.84,0.54,0,0.70) con�gura-
tion, proposed by Karlsson and Mennesson in [24]. This con�guration is a non-regular
pentagon con�guration, with telescope locations

Æ1 = 0 ; Æ2 = 1:069 ; Æ3 = 2:455 ; Æ4 = 2� � Æ3 ; Æ5 = 2� � Æ4 : (4.2)

This is the one and only set of Æk providing the right amplitude coe�cients for equal size
telescopes. This can easily be shown by numerically solving the nulling equations (3.8)
for the two GACs, introducing the amplitude coe�cients (4.1), with a Newton-Raphson
method: the iterations always converge towards that particular set of Æk or towards a
non-physical solution with all telescopes at the same place.

Let us now describe the RL2(1,0.84,0.54,0,0.70) in more detail. The geometry of the
pentagon array is shown in �gure 4.1, with the generalized entrance pupil of the two GACs.
A schematic recombination scheme for the beams is presented in �gure 4.2. Let A0 be the
overall amplitude modulus seen by each telescope, and I0 = A2

0 the corresponding intensity,
including re�ection loss and detector quantum e�ciency. From the recombining scheme,
we get for GAC1 an amplitude modulus for each telescope given by:

Telescope 1 : A0 �
p
1=2 �

p
1=2 �

p
1=2 ;

Telescope 2 : A0 �
p
1=2 �

p
1=2 ;

Telescope 3 : A0 � k �
p
1=2 �

p
1=2 ;

Telescope 4 : A0 �
p
1� k2 �

p
1=2 �

p
1=2 :

Setting t = 2�L�=�, the output amplitudes of the GACs read:

AGAC1(�; �) =
A0

2

�
1p
2
ejt cos� � ejt cos(Æ2��) + kejt cos(Æ3��) �

p
1� k2 ejt cos(Æ4��)

�
;

AGAC2(�; �) =
A0

2

�
1p
2
ejt cos� �

p
1� k2 ejt cos(Æ3��) + kejt cos(Æ4��) � ejt cos(Æ5��)

�
;
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Figure 4.1: The RL2(1,0.84,0.54,0,0.70) nulling interferometer and its two sub-nulling in-
terferometers, the GACs, with their generalized entrance pupils.
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Figure 4.2: Schematic recombination of the beams for the RL2(1,0.84,0.54,0,0.70) inter-
ferometer. Note the beam-splitter intensity coe�cients of k2, 1� k2 (where k = 0:838).
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where the A0=2 factor accounts for the losses in the recombining scheme: one half of the
intensity is lost at each beam-combiner since only one of the two outputs is used. The
intensities are the square of the amplitude moduli. The normalized2 intensities represent
the transmission map of each GAC, plotted in �gure 4.3. The recombination e�ciency of
any GAC, de�ned as the maximum of IGAC=2:5I0, is equal to 0:955.

The recombination of the nulled outputs of GAC1 and GAC2 on a lossless beam-
combiner yields the two detected signals S12 and S21, de�ned by equation (3.11). Assuming
�im = ��=2 as usual, �gure 4.4 shows the transmission maps for the two cases.

The expected modulation e�ciency as a function of the source location is given by:

jS12 � S21j
5I0

: (4.3)

The modulation characteristics are the following:

� Mean modulation e�ciency: 0.118. This is the relevant �gure when the planetary
location is unknown (detection phase).

� Maximum modulation e�ciency: 0.546. This is the relevant �gure when the planet
has been detected and located. It is then possible to optimize the array size and
orientation for spectroscopy at a given wavelength.

� RMS of the modulation e�ciency over the �eld of view: 0.117.

Figure 4.5 shows how the sky coverage can be improved by using for instance four di�erent
array positions deduced from 18Æ rotations. The modulation crown surrounding the central
null becomes quite uniform with this trick, with a relative e�ciency above 50% of maximum
over a 40 mas-wide crown3. Three rotations would be enough to get rid of the azimuthal
directions of zero modulation, but some regions would still have a quite low modulation
e�ciency (only about 20% of maximum). A compromise must be found between the
number of rotations (i.e., the time and energy consumption in the detection phase) and
the uniformity of the map (i.e., the quality of the SNR over the modulation crown).

Di�erent size telescopes

When it is not necessary to have similar telescope size, any set of angles Æk can yield a
nulling interferometer with internal modulation between two GACs. Such con�gurations
are not members of the RL family, since the telescope diameters must be equal in RL
con�gurations.

Mennesson has developed an IDL code to search for the optimal con�guration of that
kind (optimal means higher modulation characteristics in our case). The results of this
optimization prove that no substantial gain is obtained by using telescopes of di�erent
sizes. Only a small gain in the mean modulation e�ciency has been observed (from � 0:12
to � 0:14).

2Normalized means divided by 2.5I0, the maximum intensity detectable on one GAC output.
3If the star is located at 10 pc from the observer, a 40 mas-wide crown centered at 80 mas from the star

typically represents a 0.5 AU-wide region at 1 AU from the star (for a random inclination of the system).
This region covers a great part of the habitable zone for a G-type star. Thus the array is well suited for
Earth-like planet detection.
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Transmission map of GAC1 Transmission map of GAC2

Figure 4.3: RL2(1,0.84,0.54,0,0.70) con�guration: transmission maps of the two GACs
projected on the sky. Field of view is 500�500 mas, interferometric array radius 15 m, and
observing wavelength 10�m.

Transmission map of nulled output S12 Transmission map of nulled output S21

Figure 4.4: RL2(1,0.84,0.54,0,0.70) con�guration: transmission maps of nulled output from
GAC1 recombined with nulled output from GAC2, with a phase shift of �=2 (left) and��=2
(right).
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Figure 4.5: Modulation e�ciency over the 500�500 mas �eld of view for the
RL2(1,0.84,0.54,0,0.70) con�guration. The right-hand map is deduced by superimposing
four maps obtained by successive rotations of 18Æ. Isophotes at 20, 50 and 80% of maximum
are shown.

Conclusion

The small increase in the modulation characteristics does not justify the use of di�erent
size telescopes. In fact, RL2(1,0.84,0.54,0,0.70) seems to be a very attractive con�gura-
tion, since it uses the minimum number of telescopes (as long as linear con�gurations are
not considered) and has a good modulation e�ciency (compare to RL3(3,2,0,1,0,2) in sec-
tion 3.3.2). This con�guration is referenced as the �Karlsson� pentagon in the following
discussions.

4.1.2 Modulation between two FTRCs

It is proven in appendix B.2.3 that when the positions of �ve telescopes are �xed on a circle,
an in�nity of real-pupil con�gurations using the �ve telescopes (each con�guration having
di�erent amplitudes for the telescopes) produce a �4 on-axis extinction. In the following
discussion, such con�gurations are called FTRCs (Five Telescopes Real Circle).

In this case, the two sub-nulling interferometers will both use the same �ve telescopes,
so that the total number of telescopes is still �ve. In fact, this paragraph is a generalization
of the previous one, since the GACs are only a particular case of FTRCs, with one of the
telescope amplitudes equal to zero.

The identi�cation of such con�gurations is a tedious task if one does not impose some
additional constraints, because of the many degrees of freedom: the overall telescope sizes,
the generalized pupil for each individual FTRC (i.e., the amplitude with which the tele-
scopes are seen in each FTRC), and the positions of the telescopes on the circle. So, we
will restrict the study to RL con�gurations, with all telescopes having the same overall
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diameter. As the previous study showed that allowing di�erent size telescopes does not
signi�cantly improve the modulation e�ciency, this restriction should not be detrimental.

Bases of the study

As stated above, each set of �ve angular positions Æk could lead to a RL con�guration
with �ve telescopes of same diameter placed on a circle. The �rst thing we have to do
is therefore to choose some arbitrary values for the Æk. The next step is to choose a �rst
FTRC con�guration based on that geometrical con�guration. Among the in�nity of other
FTRCs with that geometry, we then search a FTRC which, superimposed on the �rst,
would give equal diameters for the telescopes. Depending on the chosen set of Æk, such a
con�guration will exist or not. In fact, the study shows that only some particular values
for the Æk lead to a solution. But when a solution exists, there seems to be an in�nity
of other solutions with the same geometry. These properties of solutions come from the
complicated structure of a nonlinear system of 10 equations with 9 unknown parameters 4.

Recombination in detail

An important factor for the modulation characteristics of a given con�guration is the
recombination scheme for the sub-nulling interferometers, and the associated recombination
e�ciency. We have already discussed the recombination schemes for DACs and GACs (see
section 3.2.2). A more exhaustive study of beam-combination is given in [40], which deals
with co-axial5 beam-combination in general.

It has already been shown6 that, starting with the simple case of two beams recombined
with a single beam-splitter, it is easy to deduce a scheme for four beams, and then, by
recurrence, for 2m beams. All beam-splitters are 50:50, and only one path connects one
input to one output.

In the case of a system with �ve telescopes, since 5 = 22 + 1, we need to consider
a beam combiner of the third order (m = 3). An example of such a combiner is given
in [40]. It uses eight inputs (three of which are �virtual�), and assumes that broad-band
phase retardation devices are introduced in each beam of the interferometer. Each beam
undergoes three re�ections or transmissions, in order to equalize to moduli of the on-
axis complex amplitudes (without it, on-axis light cancellation would not be possible).
Assuming lossless beam-splitters, the re�ection and transmission coe�cients have both the
same modulus jrj = jtj = 1=2, so that only 1/8th of each beam is actually used (one half
of the intensity is lost at each beam-splitter). The e�ciency of the proposed scheme is
therefore only 5/8, while it approaches unity for a GAC, for which second order beam-
combination is used.

4The ten equations are the six linear conditions for a �4 central extinction for the two sub-arrays and
the four nonlinear conditions to get equal size telescopes. The nine unknown parameters are the nine beam
amplitudes that remain free when an arbitrary amplitude is �xed.

5This type of beam-combination is always used in this work. It uses beam-splitter type arrangement, for
which the beams are perfectly coincident, to produce an in�nite interfringe distance (�u�ed-out fringes).

6for example in some of the ESO studies for the VLTI
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This recombination scheme will be used in the following discussions. Its poor recom-
bination e�ciency will be an intrinsic limitation to the modulation e�ciency of the �ve-
telescope con�gurations. A better scheme, with less losses, would be a great improvement
not only for the �ve-telescope con�gurations, but also for the others, that also su�er from
the losses at each beam-splitter.

Qualitative results

In order to search for con�gurations with equal size telescopes, a tolerance was �xed to
de�ned what �equal sizes� means: in the following, a relative di�erence of 1% between the
telescopes surfaces is tolerated. Our goal is to �nd some sets of Æk which allow for equal
size telescopes, and to study the modulation characteristics of those con�gurations.

As a result of a random search, about ten suitable Æk sets were found. For each set, there
are many possible amplitudes (i.e., beam-splitter ratios) for the two FTRCs, depending
on the choice for the �rst FTRC. The modulation e�ciencies of all those con�gurations
were computed, and a somewhat strange property was found: for a given geometrical
con�guration with �ve telescopes on a circle, the modulation characteristics are exactly
the same whatever the relative amplitudes in the recombination scheme, i.e., whatever the
two chosen individual FTRCs.

For example, using the same angular positions as for the already studied RL2(1,0.84,
0.54,0,0.70) con�guration, the IDL code gave more than one hundred solutions, even if the
set of tested amplitudes was not very large (about 10000 tested con�gurations). Among
those solutions, the RL2(1,0.84,0.54,0,0.70) was naturally present, since the GACs are
special cases of FTRCs, with one diameter equal to zero.

Another special con�guration is the regular pentagon (equal angular separation between
successive telescopes). Detailed results for this con�guration are presented in the following
paragraph.

The regular pentagon

The angular positions Æk of the telescopes are 2
5
(k�1)� for a regular pentagon con�guration.

This set is one of the suitable sets of Æk for a RL2 con�guration to exist. Let us write three
possible sets of amplitudes, among the in�nity of possibilities:

Set 1:

�
FTRC1: �1 = 1; �2 = 1:482; �3 = �3:398; �4 = 4:016; �5 = �3:1;
FTRC2: �0

1 = 3:9; �0
2 = �3:741; �0

3 = 2:154; �0
4 = 0:257; �0

5 = �2:569;

Set 2:

�
FTRC1: �1 = 1; �2 = �2:218; �3 = 2:589; �4 = �1:971; �5 = 0:6;
FTRC2: �0

1 = �2:4; �0
2 = 1:353; �0

3 = 0:210; �0
4 = �1:693; �0

5 = 2:530;

Set 3:

�
FTRC1: �1 = 1; �2 = �3:218; �3 = 4:207; �4 = �3:589; �5 = 1:6;
FTRC2: �0

1 = �4:1; �0
2 = 2:729; �0

3 = �0:315; �0
4 = �2:219; �0

5 = 3:905 :

The second of these con�gurations is illustrated in �gure 4.6.
As explained above, these con�gurations give exactly the same modulation character-

istics:

� Mean modulation e�ciency: 0.060
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Figure 4.6: The regular pentagon nulling interferometer and a possibility for its two sub-
nulling interferometers (FTRCs), with their generalized entrance pupils.

� Maximum modulation e�ciency: 0.298

� RMS of modulation e�ciency: 0.061

As expected, the modulation e�ciency is about two times smaller than the modulation
e�ciency of the Karlsson pentagon (with internal modulation between two GACs), because
of the recombining scheme is of the third order.

Figure 4.7: Modulation e�ciency over the 500�500 mas �eld of view for the regu-
lar pentagon con�guration (nicknamed �daisy� con�guration because of the modulation
map's shape). The right-hand map is deduced by superposition of two maps shifted by
18Æ(=360Æ/20). It shows an almost uniform modulation crown, about 40 mas wide.

The modulation map for the regular pentagon is shown in �gure 4.7. This daisy-
shaped modulation map has a big advantage but also a drawback. On one hand, the need
for array rotation is reduced because a single rotation of �=10 blurs the petals of the daisy
and gives a good modulation e�ciency on a crown surrounding the central null. But on the
other hand, even if the array is rotated, there will still remain a big crown-shaped hole of
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modulation just outside the petals of the daisy. This is a serious drawback in the detection
phase, since the unknown planet could be located in this big hole, and therefore not be
detected. Fortunately, the use of di�erent wavelength bins can overcome this drawback,
since a variation in wavelength is equivalent to a change in the interferometer baseline. In
the spectroscopic phase, the baseline should be adapted to the observation wavelength, but
this is the case for all the con�gurations.

The pentagon con�guration could therefore be a very attractive solution, if the recom-
bination scheme was improved. For the moment, the RL2(1,0.84,0.54,0,0.70) pentagon
remains our best candidate, because its modulation e�ciency is two times better.

Other con�gurations

At least a dozen of other con�gurations may be found, each with a di�erent irregular
pentagonal shape. Three of these possibilities are listed below:

(Æk) = (0; 0:781; 2:211; 3:601; 5:155) ;

(Æk) = (0; 0:654; 2:618; 3:665; 5:630) ;

(Æk) = (0; 1:524; 2:877; 4:385; 5:378) :

All these con�gurations have approximately the same modulation e�ciencies: mean
modulation e�ciency about 0.057 and maximum below 0.3. Only the modulation map
signi�cantly changes between these con�gurations. In fact, there remains a similitude with
the daisy-shape, but some of the ten petals have a high modulation e�ciency whereas other
are very dark on the map (see �gure 4.5 for an illustration). Therefore, these maps are
not as interesting as the genuine daisy con�guration because the rotations needed to get a
uniform modulation crown are larger or more numerous.

Conclusions

The RL2 con�gurations with two FTRCs sub-arrays badly su�er from the recombination
ine�ciency associated with third order beam-combination. If that problem could be solved
with new recombination schemes, the so-called daisy con�guration could be a very interes-
ting one, because it only uses �ve telescopes, and its modulation map shows interesting
features.

4.2 RL con�gurations with six telescopes

Three RL con�gurations with six telescopes have already been proposed by Karlsson and
Mennesson [24]. Two of them perform internal modulation between three GACs: the
RL3(3,2,0,1, 0,2) con�guration has already been studied in chapter 3, while RL3(1,1,0,1,1,0)
will be described in section 4.2.2 as a particular case of the �1-2-4-5 family�. The last one,
called RL3(2,1,1,2,1,1), is composed of three sub-arrays, each made up of six telescopes.
This last con�guration will be brie�y described in section 4.2.4.

In the following developments, we only consider RL con�gurations (de�ned in sec-
tion 3.3.2), so that the diameters of all the telescopes are equal. This hypothesis has
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already been justi�ed: on one hand, it is a good way to reduce the manufacturing cost,
and on the other hand, the study of 5-telescope con�gurations has shown that no big im-
provement of the modulation e�ciency is obtained when using di�erent size telescopes. We
expect this property to be also valid for 6-telescope con�gurations to some extent. More-
over, we will discover a large number of con�gurations with equal size telescopes, with a
variety of modulation maps, so that other con�gurations should not bring very di�erent
results.

4.2.1 Modulation between two GACs

By using the properties of the GACs, we show that an in�nite family of 6-telescope RL con-
�gurations exists when recombining two GACs. A systematic study of such con�gurations
is undertaken hereafter.

Geometrical considerations

For the superposition of two subsets of four telescopes (GACs) to form a 6-telescope in-
terferometer, two telescopes must be common to these two sub-arrays. The other four
telescopes are part of only one GAC, so that these four telescopes must all have the same
diameter in their respective GAC. We will take this diameter as unity for the sake of sim-
plicity. Let us choose the con�guration of the �rst GAC (called GAC1), in such a way that
telescopes 1 and 2 have the same size (taken as unity), and only belong to GAC1.

Taking the same notations as in appendix B.1.2 (ck = Dk cos�k), the condition for an
on-axis null writes c1 + c2 + c3 + c4 = 0. Let us see what this relation implies on c3 and
c4. There are two possibilities to examine, depending on the relative phase shift between
telescopes 1 and 2 (see �gure 4.8):

� If telescopes 1 and 2 are seen with the same phase shift, arbitrarily set to zero (yielding
c1 = c2 = 1), then, to ensure a completely destructive interference on the axis, the
two other telescopes must satisfy c3 + c4 = �2. Now, telescopes 3 and 4 are shared
with GAC2. In order to ensure that their total surface is unity as for telescopes 1
and 2, their diameter in GAC1 must be less than one. But with jc3j < 1 and jc4j < 1,
it is impossible to satisfy the above nulling condition, and thus such a con�guration
does not exist.

� If telescopes 1 and 2 have a di�erent phase shift in GAC1, then the nulling relation
c1 + c2 + c3 + c4 = 0 becomes c3 + c4 = 0, so that telescopes 3 and 4 also have
the same (and a priori arbitrary) size, and opposite phase shifts. Note that GAC1
is symmetric with respect to a diameter (�gure 4.8). The size of telescopes 3 and
4 in GAC2 must be c03 = �c04 =

p
1� (c3)2 (or with an opposite sign) in order to

have the same overall size for all the telescopes. The last two telescopes (number 5
and 6) are �nally placed, once again symmetrically with respect to the same axis, so
that, if their diameter is unity, the conditions for nulling are satis�ed. There are two
possibilities, one on each side of the line joining telescopes 3 and 4.
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Figure 4.8: Generalized entrance pupil for the two cases considered above (Tk is the
telescope's number in GAC1). Only the second case can give rise to a RL interferometer,
when combined with one of its two �complementary� GACs.

Systematic study of this family

Let us present the successive steps needed to build an interferometer belonging to this new
family:

� choose the position Æ2 of telescope 2 relative to telescope 1 (we let Æ1 = 0 as usual),

� choose the position Æ3 of telescope 3. The position of telescope 4 is deduced by
symmetry, and the telescope's diameters determined by the conditions to get a �4

on-axis extinction.

� choose a side for telescopes 5 and 6. On each side of the 3-4 line, there is a unique
position for those two telescopes. Their diameter is one.

By means of an IDL code, the modulation e�ciencies of a large series of con�gurations
have been computed. The array radius, observing wavelength and �eld of view are the same
as usual. The simulations show that a higher e�ciency is reached when the telescopes are
well distributed on the circle (no telescope close to another). Therefore, the best con�gu-
ration is the �completely� symmetric RL2(1,1,0.707,0,0,0.707) con�guration, illustrated in
�gure 4.9.

The modulation map is illustrated in �gure 4.10, with the following values:

� Mean modulation e�ciency: 0.130

� Maximum modulation e�ciency: 0.654

� RMS of modulation e�ciency: 0.152

Conclusion

This con�guration has one of the best modulation e�ciency (max and mean), but its
modulation map is not uniform at all. Even with four superposed maps, we do not obtain
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Figure 4.9: The RL2(1,1,0.707,0,0,0.707) nulling interferometer and its two sub-nulling
interferometers (GACs), with their generalized entrance pupils.

Figure 4.10: Modulation e�ciency over the 500�500 mas �eld of view for the
RL2(1,1,0.707,0,0,0.707) con�guration. The right-hand map is deduced by superimpo-
sing four maps obtained by successive rotations of �=8 radians (27.5Æ). Isophotes at 20, 50
and 80% of maximum are shown.

a very uniform map, even if the radial directions of zero transmission are eliminated. Six
rotations would be required in order to get a quite uniform modulation crown. Indeed
it seems unavoidable that circular con�gurations with very high maximum modulation
e�ciency have non-uniform modulation maps (see the Karlsson pentagon for example).
Nevertheless, if high modulation e�ciency is desired above all, this con�guration should
be regarded as the best for now.

4.2.2 Modulation between three GACs

A complete study of the RL con�gurations with six telescopes forming three GACs cannot
be easily undertaken because of the numerous degrees of freedom encountered. So, in
addition to the �equal size telescopes� condition, we will restrict the study to some �regular�
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con�gurations. What we mean by regular is that the three GACs have a similar shape. Let
us distribute telescopes 1 to 6 in growing order along a circle. If GAC1 comprises telescopes
1-2-3-5, then we choose GACs 2 and 3 to be respectively composed of telescopes 3-4-5-1
and 5-6-1-3, so that a certain symmetry is preserved in the GACs' arrangement. This
symmetry argument can be justi�ed because the previous developments tend to prove that
the con�gurations preserving some symmetry either have the best modulation e�ciencies,
or show interesting features in their modulation map.

Restricting to those regular con�gurations, we have three cases to consider, depending
on the choice for the �rst GAC. The three possibilities are 1-2-3-4, 1-2-3-5 and 1-2-4-5. All
other con�gurations can be reduced to one of these by re-labeling the telescopes.

Note that except for the regularity of the GACs' pattern, no real symmetry condition
is imposed on the geometry of the array. But we will see below that the regularity of the
pattern implies itself some symmetry in the geometrical con�guration of the six telescopes
(which is indeed quite a good news).

The 1-2-3-4 con�gurations

The geometry for a 1-2-3-4 con�guration is illustrated in �gure 4.11. GACs 2 and 3 are
respectively composed of telescopes 3-4-5-6 and 5-6-1-2. By using the nulling equations for
the three GACs, we prove below that the only allowed geometry is a superposition of two
equilateral triangles, with an arbitrary angle between them. An angle of 40Æ is chosen in
�gure 4.11.
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Figure 4.11: An hexagonal 1-2-3-4 nulling interferometer and its three sub-nulling inter-
ferometers (GACs), with their generalized entrance pupils. The six telescopes are forming
two equilateral triangles, with a relative angle of 40Æ in this example.

In order to build a 1-2-3-4 con�guration, one has to take the following steps:

� The �rst GAC can be arbitrarily chosen. Both the diameters and the positions of the
telescopes are a priori free. So, a geometry (Æ1; Æ2; Æ3; Æ4) is chosen and the generalized
diameters c1; c2; c3; c4 are deduced to form a GAC.

� GAC2 shares telescopes 3 and 4 with the �rst GAC. These telescopes are numbered
1' and 2' in GAC2. In order to equalize the telescopes' size, we impose a relation
between c01 and c

0
2: (c3)

2 + (c01)
2 = (c4)

2 + (c02)
2. The positions Æ01 and Æ

0
2 are already

�xed (equal to Æ3 and Æ4), so that �ve degrees of freedom remain for GAC2 (c01, c
0
3,
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c04 and Æ
0
3, Æ

0
4) whereas only three nulling equations are to be satis�ed. Therefore, we

can arbitrarily choose the two remaining positions (Æ03 and Æ
0
4), and the generalized

diameters are deduced from the nulling equations.

� The last GAC shares its telescopes 1� and 2� with telescopes 3' and 4' of GAC2,
and its telescopes 3� and 4� with telescopes 1 and 2 of GAC1. So, the diameters in
GAC3 can be deduced from the �equal size telescopes� conditions. Moreover, all the
positions are known. Only the phase shifts (i.e., the sign of the generalized diameters
c00k) are unknown. The only thing to do with GAC3 is therefore to see whether these
parameters are actually forming a GAC, i.e., whether they satisfy the nulling equation
for a ��4 rejection rate.

The previous steps have been implemented in an IDL code, with the following result: the
nulling equations for GAC3 are satis�ed if and only if the six telescopes are arranged on
two equilateral triangles inscribed on the circle. In that particular case, the three GACs
are actually the same (to within a 120Æ rotation, see �gure 4.11). Thus, a single parameter
(the angle between the two triangles) is su�cient to de�ne a 1-2-3-4 RL3 con�guration.

Modulation e�ciencies have been computed for a large series of con�gurations (by
varying the angular parameter). The best modulation characteristics are obtained with a
totally symmetric con�guration: a regular hexagon. It is the RL3(2,2,1,0,0,1) con�guration.
Its modulation characteristics are:

� Mean modulation e�ciency: 0.128

� Maximum modulation e�ciency: 0.340

� RMS of modulation e�ciency: 0.108

Figure 4.12: Modulation map for the RL3(2,2,1,0,0,1) con�guration.



Chapter 4. Darwin aperture configurations 84

The modulation map, illustrated in �gure 4.12 is exactly the same as the map for the
hexagonal RL3(3,2,0,1,0,2) con�guration already studied in section 3.3.2. This property
has already been encountered in the 5-telescope con�gurations: any given array geometry
can give the same modulation characteristics with di�erent recombining schemes. Note
that in this case, the e�ciencies are slightly better than in the RL3(3,2,0,1,0,2) case.

The 1-2-3-5 con�gurations

The procedure to build a 1-2-3-5 con�guration (illustrated in �gure 4.13) is straightforward:
since telescopes 2, 4 and 6 only belong to a single GAC, they are all taken with a unitary
diameter, in order to satisfy the �equal size telescopes� condition. Then, if the geometry is
chosen, there remain 3�3=9 unknown parameters (the three remaining telescope diameters
in each GAC) for 9 nulling equations. So, for a given geometry, there is only one nulling
con�guration. But this con�guration will be a priori composed of di�erent size telescopes.
The last thing to do is therefore to verify the �equal size telescopes� conditions for telescopes
1, 3 and 5. With the same notations as above, these conditions read:

(c1)
2 + (c04)

2 + (c003)
2 = 1 ;

(c3)
2 + (c01)

2 + (c004)
2 = 1 ;

(c4)
2 + (c03)

2 + (c001)
2 = 1 :

Using an IDL code and exploring a large series of geometrical con�gurations, we conclude
that, just as for the 1-2-3-4 con�gurations, the only allowed geometry is the superposition
of two equilateral triangles (see �gure 4.13). All other geometrical con�gurations yield
di�erent size telescopes.
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Figure 4.13: An hexagonal 1-2-3-5 nulling interferometer and its three sub-nulling inter-
ferometers (GACs), with their generalized entrance pupils. The six telescopes are forming
two equilateral triangles, with a relative angle of 40Æ in this example.

As in the previous case, we only have to vary a single parameter (the angle between the
two triangles) to explore the modulation characteristics of all con�gurations. As expected,
the regular hexagon (i.e., the most symmetrical con�guration) yields the higher mean

modulation e�ciency:

� Mean modulation e�ciency: 0.121

� Maximum modulation e�ciency: 0.299
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� RMS of modulation e�ciency: 0.102

This con�guration is indeed the RL3(3,2,0,1,0,2) regular hexagon, �rst proposed by Karls-
son and presented in section 3.3.2.

But unlike the previous case, this con�guration has not the highest maximum modula-
tion e�ciency: when the angle between the two triangles is equal to 40Æ, the modulation
characteristics are:

� Mean modulation e�ciency: 0.110

� Maximum modulation e�ciency: 0.416

� RMS of modulation e�ciency: 0.084

This is the RL3(1,0.449,0,0.293,0,0.844) con�guration, illustrated in �gure 4.13. Its modu-
lation map is shown in �gure 4.14. Surprisingly, it has a perfect six-fold symmetry as the
regular hexagon. As a consequence, the superposition of three maps shifted by 20Æ with
respect to each other produces a very uniform sky coverage: the modulation e�ciency is
larger than 20% almost everywhere over a 140 mas-wide crown! It is therefore very well
suited to the detection phase, even better than the regular hexagon.

Figure 4.14: Modulation e�ciency over the 500�500 mas �eld of view for the
RL3(1,0.449,0,0.293,0,0.844) con�guration. The right-hand map is deduced by superim-
posing three individual maps obtained by successive rotations of 20Æ.

The 1-2-4-5 con�gurations

In order to build a 1-2-4-5 con�guration, the same procedure as for a 1-2-3-4 con�guration
can be used, because any two GACs have two telescopes in common. The only di�erence
comes from the telescope labeling. Once again, the numerical simulations show that the
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Figure 4.15: An hexagonal 1-2-4-5 nulling interferometer and its three sub-nulling inter-
ferometers (GACs), with their generalized entrance pupils. The six telescopes are forming
two equilateral triangles, with a relative angle of 40Æ in this example.

only allowed geometry consists in the superposition of two equilateral triangles (�gure 4.15).

The regular hexagon RL3(1,1,0,1,1,0) seems apparently very attractive, since all tele-
scopes participating to a GAC are seen with the same amplitude, and therefore only 50:50
beam-splitters are used. But unfortunately, its modulation characteristics are very bad.
Indeed, writing down the expressions for the amplitude of each GAC, we immediately
see that these amplitudes are real, so that the modulation e�ciency is null according to
equation (3.14). This fact has already been stated by Mennesson [38].

All other possibilities for the angular parameter have been investigated. The best
modulation e�ciency happens for a 40Æ angle between the two triangles:

� Mean modulation e�ciency: 0.088

� Maximum modulation e�ciency: 0.589

� RMS of modulation e�ciency: 0.099

This is the RL3(1,1,0,0.532,0.532,0) con�guration, which has one of the highest maximum
modulation e�ciency, but quite a low mean e�ciency. It would therefore be well suited for
spectroscopic investigations, when the planetary location is known, but not very e�cient
in the detection phase. Its modulation map is shown in �gure 4.16. The six modulation
maxima are quite narrow. Therefore, a large number of rotations (at least six) are needed
to get a uniform modulation map.

Conclusion

In this section, a large number of new con�gurations were found, and the two known
con�gurations re-discovered. These facts can be taken as an a posteriori justi�cation of the
�regularity� hypothesis we made at the beginning: if only a small number of con�gurations
had been found, we would have been obliged to go back and make other hypothesis. The
modulation e�ciencies of these new con�gurations are not signi�cantly higher than the one
we found for the Karlsson pentagon. The mean modulation e�ciency can almost reach 0.13,
but the maximum e�ciency is generally not very high (except for the last con�guration).
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Figure 4.16: Modulation e�ciency over the 500�500 mas �eld of view for the
RL3(1,1,0,0.532,0.532,0) con�guration. The right-hand map is deduced by superimposing
three maps obtained by successive rotations of 20Æ. Note that the modulation crown is
not uniform at all. Some radial directions have a modulation e�ciency smaller than 10%,
while the bright maxima have a modulation e�ciency larger than 50%. More than three
rotations would therefore be required in the detection phase.

This fact is easily understandable if we go back to the modulation e�ciency de�nition (3.21)
for a RL3 con�guration:

jS12 � S21j+ jS13 � S31j+ jS23 � S32j
6I0

: (4.4)

Each jSij � Sjij term in this sum represents the useful planetary part of the signal for a
i-j pair of GACs. It is quite obvious that the maxima of modulation e�ciency between
GACs 1 and 2 will not happen at the same places on the sky as for the 1-3 and the 2-3
pairs. So, even if the modulation e�ciency is locally very high for a pair of GACs, the
global e�ciency for the three GACs will not generally be so high because only a third of
the total signal (6I0) is directed to this output, the two other thirds being directed towards
the two other pairs of GACs (with a lowest e�ciency). This is the reason why the 3-GAC
con�gurations are less e�cient when the planet is located (spectroscopy phase).

However, a special attention must be given to the 40Æ geometry. When used in the 1-2-
3-5 recombination scheme, this arrangement gives both a good mean and a good maximum
e�ciency. Moreover, as proposed by Lawson et al. in [29], it could be possible to design
TPF (or Darwin in our case) with the ability to recon�gure its beam-combining optics
through an exchange of combiner modules. This ability could be used in order to optimize
the instrument for each phase: keeping the same array geometry, the 1-2-3-5 con�guration
(with a good mean e�ciency) would be used during the detection phase, and the 1-2-4-5
con�guration during the spectroscopy phase, when a high maximum e�ciency is required7.

7During the spectroscopic study of a planet, since the planetary location is known, the baseline is
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4.2.3 Modulation between FTRCs

The study of those con�gurations is a very tedious work, since there are many degrees of
freedom to take into account. In fact, this study is not very useful for two reasons:

� The main reason comes from the recombining scheme for the 5-telescope sub-arrays
(FTRCs). We have proven in section 4.1.2 that a third order recombination scheme
is necessary when sub-arrays composed of �ve telescopes are involved (whereas a
second order scheme is su�cient for GACs). The addition of a third recombining
level reduces the recombination e�ciency by a factor of two, so that the modulation
e�ciency is about two times lower than that of GACs.

� Even if a better recombination scheme could be found, there should not be a great
advantage in using FTRCs instead of GACs. On one hand, this complicates the
recombination optics by involving more telescopes in each sub-array, and on the
other hand, a great variety of modulation maps are already available when GACs are
recombined.

For these reasons, we will not undertake a systematic study of RL con�gurations with
six telescopes performing internal modulation between FTRC sub-arrays.

4.2.4 Modulation between STRCs

The abbreviation �STRC� stands for a �Six Telescopes Real Circular� con�guration, yielding
a �4 on-axis extinction (same notation as for FTRC). For the same reason as above (i.e., the
need for third order recombination schemes), internal modulation between STRCs should
not be very e�cient. We will anyway say a word about one of these con�gurations, the
RL3(2,1,1,2,1,1), which has been proposed by A. Karlsson in [24]. Its regular hexagonal
geometry is illustrated in �gure 4.17.
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Figure 4.17: The RL3(2,1,1,2,1,1) nulling interferometer and its three sub-nulling interfe-
rometers (STRCs), with their generalized entrance pupils.

As expected, its modulation e�ciency is far weaker than those for the other con�gura-
tions:

� Mean modulation e�ciency: 0.029

optimized for that location, with a maximum modulation permanently pointed towards that direction.
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� Maximum modulation e�ciency: 0.113

� RMS of modulation e�ciency: 0.024

This con�guration is therefore of no practical interest.
Another remark about internal modulation between STRCs is that a ��6 rejection rate

is not reachable. Indeed, it can easily be proven that, for any given circular geometry, there
exists one and only one real nulling con�guration yielding a ��6 rejection rate. Since two
sub-arrays are needed to perform internal modulation, this rejection rate is not achievable
when internal modulation is used.

4.3 Linear con�gurations with internal modulation

4.3.1 General considerations

We have seen in section 3.3.3 how two linear sub-arrays (Bracewell, DAC or even OASES)
can be recombined to form a linear array with internal modulation. Some general properties
of these con�gurations can be deduced without any calculation, and are discussed below.

The most evident property of linear con�gurations is that the maxima of the modulation
maps always have a linear shape, the lines of maximum e�ciency being perpendicular to
the array. This property comes from the fact that the two sub-arrays are on a same line,
so that their linear fringe patterns are parallel to each other. This is in fact one serious
drawback for linear con�gurations, since a uniform modulation map is required. In order
to get a mean modulation map with su�cient uniformity, the array needs to be rotated at
least three or four times, with large amplitudes, which consumes propellant and time.

A second feature of linear arrays is the need to equalize the optical paths between
the telescopes and the recombination hub, in order to avoid long delay lines. Since no
point is equidistant from the telescopes, re�ections must be introduced on the optical
paths to lengthen the shortest of them. If the distances between successive telescopes are
equal, this can be done by sending the beams to neighboring telescopes before sending
them to the beam-combiner (see �gure 4.18). However, by routing the starlight from
one telescope to another, the control laws of the telescopes may be overly constrained
(see [29]). When the distances between successive telescopes are not equal any more, delay
compensation becomes a complicated task, and simple solutions do not often exist. Optical
delay compensation is therefore a serious limitation to linear arrays.

With these two drawbacks, then why use linear arrays? The answer comes from the
number of telescopes: internal modulation can be achieved with only four telescopes, still
ensuring a ��4 rejection rate. Moreover, the sub-nulling interferometers being composed of
three or four telescopes, second order recombination schemes are used (see section 4.1.2),
giving a good recombination e�ciency with quite simple optics.

In this section, the most interesting con�gurations (i.e., with the smallest possible
number of telescopes) of section 3.3.3 are studied, as well as other types of con�gurations,
involving non regular DACs, or recombination of DACs in a two dimensional scheme.
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Figure 4.18: Delay compensation in the plane of the array (taken from [29]). This method
is currently envisaged for TPF.

4.3.2 Modulation between two regular DACs

Linear con�gurations

There are three possible ways to recombine two DACs in a linear con�guration, depending
on the number of telescopes they share (see section 3.3.3). Among those possibilities, the
most interesting one is clearly the 4-telescope linear array because the number of telescopes
is minimum. Let us study this con�guration in detail.

The e�ective diameters for a regular DAC being in a 1:
p
2:1 ratio, the diameters for

the global array are in a 1:
p
3:
p
3:1 ratio (see �gure 4.19). For the study, a distance of

10 m between the telescopes is chosen, so that the total baseline is 30 m, allowing an easy
comparison with the circular con�gurations (30 m in diameter).
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Figure 4.19: The 4-telescope linear array with internal modulation between two regular
DACs. Note the 1:

p
3:
p
3:1 ratio for the total diameters.

The modulation characteristics of this con�guration are listed below:

� Mean modulation e�ciency: 0.181

� Maximum modulation e�ciency: 0.518

� RMS of modulation e�ciency: 0.191
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Compared to circular con�gurations, this is a very good modulation e�ciency. The modu-
lation map is shown in �gure 4.20. The parallel lines of maximum modulation are a cha-
racteristic of linear con�gurations. In order to make the modulation map more uniform,
two successive rotations of 60Æ are applied to the array, and the three maps superimposed
(�gure 4.21). The resulting map shows a bright modulation crown surrounding the central
null, with a good uniformity: the relative e�ciency is above 50% of maximum almost
everywhere (i.e., modulation e�ciency above 25%). An almost complete sky coverage can
even be achieved with four superposed maps (�gure 4.22).

Figure 4.20: Modulation e�ciency over the 500�500 mas �eld of view for the 4-telescope
regular linear array.

Let us sum up the advantages and drawbacks of this �rst linear con�guration:

� High modulation e�ciency (mean and max)

� Only four telescopes, but of di�erent sizes

� Non uniform modulation map (composed of parallel lines)

� Need for large and numerous rotations to make the modulation map uniform

� Need for beam re�ection on a neighboring telescope to equalize the optical paths

A quantitative study of the practical consequences of these advantages and drawbacks
should be one of the next goals for the Darwin team.

A last remark about this con�guration concerns delay compensation for the beams. We
have seen in �gure 4.18 that a simple way to compensate for the optical path di�erence
between the beams is to use re�ections on neighboring telescopes. Another proposal is
described in [29]. It uses a non plane con�guration with a parabolic shape. This would
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Figure 4.21: This map is deduced from �gure 4.20 by superimposing three maps obtained
by successive rotations of 60Æ. Isophotes at 20, 50 and 80% of maximum are shown.

Figure 4.22: This map is deduced from �gure 4.20 by superimposing four maps obtained
by successive rotations of 45Æ. Isophotes at 20, 50 and 80% of maximum are shown.

have been a good solution if the thermal coupling between the telescopes was not a serious
problem. We have shown in section 3.3.1 that non plane con�gurations cannot be accepted.

After dealing with the 4-telescope linear array, the recombination of two DACs sha-
ring only one telescope should also be considered, since �ve telescopes are still a low-cost
solution, even if the telescopes do not have the same size. In this case, the diameters are
in a 1:

p
2:
p
2:
p
2:1 ratio. In order to keep approximately the same angular resolution as
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before, the length of each DAC remains 20 m, so that the total length of the array is 40 m.

� Mean modulation e�ciency: 0.201

� Maximum modulation e�ciency: 0.778

� RMS of modulation e�ciency: 0.268

This is indeed quite better than any other con�guration. A maximum e�ciency of 78% is
probably one of the best reachable e�ciencies. So, even if �ve telescopes of di�erent sizes
are used, and even if large rotations are needed to make the map uniform, this con�guration
has an obvious interest.

Figure 4.23: Modulation e�ciency over the 500�500 mas �eld of view for the 5-telescope
regular linear array. The right-hand map is deduced by superimposing four maps obtained
by successive rotations of 45Æ. Isophotes at 20, 50 and 80% of maximum are shown.

The modulation map is shown in �gure 4.23, together with the superposition of four
rotated maps. Just as in the previous case, the superposition of three maps is su�cient to
get an almost uniform modulation crown, but an even better sky coverage is obtained with
four maps: a relative e�ciency above 50% of maximum is maintained over a crown about
30 mas wide. This means that a planet located between 80 and 110 mas from the central
star is modulated with an e�ciency better than 40% when the observing wavelength is
10 �m.

Unfortunately, there is no obvious way to compensate the OPDs between the beams for
this 5-telescope linear con�guration. If a simple way to achieve the equality of the optical
paths could be found, this con�guration would surely be one of the most interesting because
of its very high maximum modulation e�ciency.
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Two dimensional con�gurations

When the two regular DACs are not on a same line any more, they cannot share more
than one telescope. There are three di�erent ways for two DACs to share a telescope (see
�gure 4.24). Let us brie�y describe those three con�gurations. In order to allow an easy
comparison between them, we will adjust the scale of each array so that the maximum
distance between two telescopes is 30 m. The �eld of view is still 500 mas in diameter, and
the observing wavelength 10 �m.
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Figure 4.24: The three possible ways to recombine two regular DACs in a two dimensional
array. Note that the angle between the two DACs can be di�erent from 90Æ.

� Corner: The distance between two successive telescopes in a DAC is set to 10.6 m.
This ensures that the distance between the two ends is about 30 m (with an angle of
90Æ between the two DACs). The computed modulation e�ciency has a maximum of
0.547 and a mean of 0.081. The mean e�ciency is low because the maxima are quite
narrow: the modulation map is dominated by dark regions (with low modulation
e�ciency) and is not uniform at all (see �gure 4.25). This con�guration is therefore
not interesting. These properties still hold when the angle between the two DACs is
modi�ed.

� T-shape: The distance between two successive telescopes in a DAC is set to
13.4 m, and the angle to 90Æ as illustrated. The computed modulation e�ciency
has a maximum of 0.448 and a mean of 0.083. Once again, the modulation map
is not very uniform (see �gure 4.25), and the uniformity cannot be easily improved
with a small number of rotations. Moreover, the modulation e�ciency is low when
compared with linear arrays.

� Cross: For this con�guration, some analytical calculations easily show that the
output of both DACs are real, so that the modulation e�ciency is zero. The numerical
simulations con�rm this analytical result.

Obviously, two dimensional con�gurations with internal modulation between two DACs
are far less interesting than linear con�gurations.
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Figure 4.25: Modulation e�ciency over the 500�500 mas �eld of view for the corner
con�guration (left) and the T-shaped con�guration (right). Both maps are not uniform at
all.

4.3.3 Modulation between two irregular DACs

Instead of recombining two regular DACs, we can use any member of the DAC family
(presented in section 3.2.2). We will restrict to linear con�gurations composed of four
telescopes, because, on one hand, linear con�gurations with �ve telescopes do not allow
simple delay compensation, and, on the other hand, two dimensional con�gurations do not
have very good modulation characteristics.

By using non regular DACs, we should try to eliminate one of the drawbacks of the
4-telescope regular array. For instance, we could try to get equal size telescopes, or to
reduce the number of re�ections needed to equalize the OPDs. On the other hand, the
uniformity of the map cannot be improved, since all linear con�gurations have the same
kind of modulation map, with parallel bright and dark lines.

Equal size telescopes

Even if the central telescope of a single DAC is theoretically the biggest, its e�ective
diameter is divided by

p
2 (remember �gure 3.8). Therefore, the central telescope is not

necessarily the biggest. This property can be used to keep four telescopes with equal
diameters when superimposing two irregular DACs. A 3: 4p

2
:1 diameter ratio can achieve

this equality since 9 = 16=2 + 1 (see �gure 4.26).
As in the regular case, the modulation e�ciency of this linear con�guration is very

good. In order to have a 30 m array, we have chosen L = 6 m (see �gure). With this value,
the modulation characteristics are:

� Mean modulation e�ciency: 0.184
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Figure 4.26: The equal-size-telescope linear array, with its two sub-nulling interferometers
(irregular DACs). The distances between successive telescopes are determined in each DAC
by the relation D1L1 = D3L3, if L1 and L3 are the distances between the central telescope
and the other two in this particular DAC.

� Maximum modulation e�ciency: 0.673

� RMS of modulation e�ciency: 0.190

Unfortunately, the modulation map shows that the �rst two maxima are neither large nor
bright (see �gure 4.27). This has a bad in�uence on the detection phase since the modula-
tion crown surrounding the central null is proportional to the �rst maximum. Superposing
three maps, we obtain a modulation crown about 25 mas wide with a modulation e�-
ciency hardly larger than 20% of maximum (i.e., e�ciency superior to 14%). This is not
a very good result, since even the Karlsson pentagon has better characteristics. The only
possibility to improve the modulation e�ciency in the detection phase is to use one of the
brightest maxima, but a large number of rotations is necessary in order to make it uniform.
Note that, even if this con�guration is less e�cient than the 4-telescope regular array in the
detection phase, it has a better e�ciency in the spectroscopic phase, because a maximum
e�ciency of 67% can be reached.

The last thing to deal with is delay compensation. Since re�ections on neighboring
telescopes do not seem to allow simple delay compensation, a new possibility is considered.
We have not spoken about the metrology hub yet. This satellite, unlike the recombination
hub, has to be �out-of-plane�, on the Sun-side of the telescopes, in order to control the
telescopes positions with a high accuracy. Mirrors could be mounted on it in order to
equalize the optical paths, as shown in �gure 4.28. Note that the telescope satellites will
heat up the metrology hub (due to re�ected light and to thermal emission of the sunshields),
but the mirrors mounted on it could probably be kept cool.

Other possibilities

When recombining two irregular DACs in a 4-telescope linear array, there are two types
of con�gurations to consider, depending on the relative distances between neighboring
telescopes. The �rst type corresponds to the case where the distance between telescopes
2 and 3 (inner telescopes) is larger than the distance L between telescopes 1 and 2 (or
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Figure 4.27: Modulation e�ciency over the 500�500 mas �eld of view for the 1:1:1:1 linear
con�guration. The right-hand map is deduced by superimposing three maps obtained by
successive rotations of 60Æ. Isophotes at 20, 50 and 80% of maximum are shown.
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Figure 4.28: Delay compensation by using re�ections on the out-of-plane metrology hub.

telescopes 3 and 4), and the second type to the other case. The modulation maps of
these two types of con�gurations have di�erent properties. We will compare them to the
modulation map of the regular array, which has two pairs of bright lines, each having the
same modulation e�ciency (see �gure 4.20).

� Type 1. When the distance between inner telescopes is larger than L, the two con-
tiguous bright lines in �gure 4.20 do not have the same modulation e�ciency any
more. The inner lines become fainter than the outer ones. This has already been
proven in the previous case with �gure 4.27. This property has a bad in�uence on the
detection phase as proven above. But, on the other hand, the maximum modulation
e�ciency grows signi�cantly, which is an advantage in the spectroscopic phase. The
same delay compensation (�gure 4.28) can be applied to all con�gurations of this
type.
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� Type 2. When the distance between inner telescopes is smaller than L, the inner
lines in �gure 4.20 become brighter and larger than the outer lines. This improves
the sky coverage in the detection phase since the �rst modulation crown becomes
large and bright when three maps are superposed. But unfortunately, the maximum
e�ciency rapidly decreases with decreasing distance between inner telescopes. For
example, when the distance ratio is 1:2, the maximum modulation e�ciency is only
0.326. So, the improvement in the map's uniformity is balanced by the decrease
in e�ciency, and there is no real improvement indeed. Moreover, the decrease in
e�ciency has a very bad in�uence for the spectroscopic phase: instead of a 51.8%
e�ciency, the planetary signal is only modulated with a poor 32.6% e�ciency. Note
that delay compensation could be somewhat simpli�ed with a type 2 con�guration,
since the beams coming from the outer telescopes do not have to be re�ected on an
inner telescope any more (see �gure 4.29).
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Figure 4.29: Delay compensation in the plane of the array for a �type 2� linear con�guration,
for which the distance between inner telescopes is smaller than L.

From these properties, we conclude that the regular linear array (with equidistant
telescopes) is probably the best compromise between a good sky coverage in the detection
phase and a high modulation e�ciency in the spectroscopic phase.

4.3.4 Modulation between OASES con�gurations

Internal modulation between two OASES con�gurations8 could also be interesting, since
only �ve telescopes are necessary if three telescopes are shared between the two OASES.
But there would be three di�erent sizes for the telescopes (global diameters in a 1:

p
2:2:

p
2:1

ratio), and the numerical simulations show that the modulation e�ciency is not better than
when DACs are recombined. These are the reasons why internal modulation between two
OASES con�gurations will not be considered. Note that delay compensation would also
constitute a major di�culty.

8An OASES con�guration is a linear con�guration with four telescopes, giving a �6 starlight suppression
(see appendix C.2.2).
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4.3.5 Conclusion

Obviously, the characteristics of linear con�gurations with internal modulation are quite
di�erent from those of circular con�gurations. The modulation e�ciency and sky coverage
of linear con�gurations are rather better, but at the expense of large array rotations and
di�erent size telescopes. The need for OPD compensation is also a serious drawback.
Among linear con�gurations, the 4-telescope regular array (modulation between two regular
DACs) seems very attractive.

4.4 Inherent internal modulation

A new kind of internal modulation has recently been proposed by Karlsson (personal
communication). The principle of inherent internal modulation is presented hereafter,
followed by Karlsson's example (referred to as the �Nils� con�guration) and some personal
investigations.

4.4.1 Principle

The goal of inherent modulation is to perform internal modulation without extra �=2 phase
shift between the outputs of the two sub-nulling interferometers. This can be done if these
outputs already have the properties of the S12 and S21 signals which are detected with inter-
nal modulation, i.e., the transmission maps R1(~�) and R2(~�) of the two sub-interferometers
must be asymmetric, and conjugated by central symmetry. In order to achieve non sym-
metrical transmission maps, the two sub-interferometers must have a complex entrance
pupil, as proven in appendix A. The central symmetry relation between the two trans-
mission maps is easily obtained by inverting the signs of the applied phase shifts (so that
R1(~�) = R2(�~�), see equation (3.4)).

We have seen in section 3.2.3 how �ve telescopes on a circle with a complex entrance
pupil can give a transmission map without central symmetry, with a ��4 rejection rate.
Moreover, as proven in appendix B.1.3, there is a double in�nity of complex con�gurations
with �ve telescopes on a circle yielding a ��4 rejection rate when the positions of the
telescopes are �xed. The following example (Nils con�guration) uses two �inverted� sets of
phase shifts for �ve telescopes on a regular pentagon, in order to produce the two required
outputs.

4.4.2 The Nils con�guration

The geometry of the Nils con�guration and its two sub-nulling interferometers is illustrated
in �gure 4.30. The �ve telescopes are arranged in a regular pentagon. The two sub-nulling
interferometers are simply two �inverted� replica of the 5-telescope circular array described
in section 3.2.3, which was �rst proposed by Léger et al. [31]. The two mirrored transmission
maps R1 and R2 of the sub-interferometers are presented in �gure 4.31.

As in the case of internal modulation, the modulation e�ciency is de�ned as jS1�S2j
2

where S1 and S2 are the output signals of the two sub-interferometers. The following
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Figure 4.30: The Nils interferometer with its two sub-nulling arrays. The applied phase
shifts are indicated near each telescope for each sub-interferometer.

Figure 4.31: Transmission maps for the two sub-nulling interferometers of the Nils con-
�guration. Field of view is 500�500 mas, array radius 15 m and observation wavelength
10 �m as usual. These maps are conjugated by central symmetry, which allows internal
modulation between them.

modulation e�ciency was found with an IDL code:

� Mean modulation e�ciency: 0.060

� Maximum modulation e�ciency: 0.298

� RMS of modulation e�ciency: 0.061

These are indeed exactly the same values as for the �Daisy� regular pentagon con�guration
(see section 4.1.2). Moreover, the modulation maps of Daisy and Nils are identical (see
�gure 4.32). We have already noticed in section 4.1.2 that nulling interferometers with the
same geometrical arrangement yield the same modulation map when internal modulation
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Figure 4.32: Modulation e�ciency of the Nils con�guration. A uniform modulation crown
can be obtained by a single 18Æ rotation (see �gure 4.7)

is used, whatever the recombination scheme. This property seems to remain true when
inherent internal modulation is used. So, inherent modulation should not give better
modulation e�ciencies than classical internal modulation.

However a new way of using the output signals S1 and S2 of the two sub-nulling in-
terferometers can be designed: instead of continuously detecting the two signals on two
detectors (as was proposed at the end of section 3.2.5 to optimize the overall SNR), one
could redirect all the collected light alternately to a single output (S1 or S2) and alter-
nately detect these �full light� outputs on a single detector. This can be done by placing
an optical switch behind each telescope in order to choose toward which output the beams
will be directed. It can easily be shown that this does not change the �nal SNR. The only
di�erence is that only one detector is required with inherent modulation. This is quite
a good thing since detector cooling needs cryogenic technology, which consumes a lot of
power and sets the maximum lifetime of the mission due to the limited cryogenic �uid
reserves.

Note that the use of a single detector is also possible in the case of classical internal
modulation, but at the expense of the SNR: since the two outputs S12 and S21 are simulta-
neously formed by a single beam-splitter, it is not possible to redirect all the light to only
one output. So, when alternate detection on a single detector is chosen, there is always
one output that is not detected, and so one half of the signal is lost.

4.4.3 A new 5-telescope recombination scheme

We have already seen several times that con�gurations involving sub-interferometers com-
posed of �ve telescopes badly su�er from the recombination losses associated to third order
recombination schemes: the recombination e�ciency of each sub-interferometer is only 5=8.
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This is the reason why the overall modulation e�ciency is signi�cantly lower than for other
con�gurations. In order to improve this e�ciency, a new recombination scheme is proposed
hereafter (�gure 4.33), for which the recombination e�ciency increases to 5=6, so that the
modulation e�ciency is multiplied by a factor 8=6. This scheme uses 1

3
:2
3
beam-splitters

at each telescope output, exploiting the fact that, for each sub-interferometer, only two
of the �ve beams cross three beam-combiners whereas the other three beams cross only
two beam-combiners (and experience therefore less losses). Unfortunately, all the collected
light cannot be directed to a single output any more, so that two detectors must be used
in order to get an optimal SNR.

� � � 1 �
* + � � � � � � � � � , � 	 � � � 
 � �

 + � � � � � � � � � , � 	 � � � 
 � �




*




*




*




*




*



*




*




*

1 �
�

� 1 �
�

� � �
�

� �
�

� �
�

� � �
�

� 1 �
�

1 �
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

� �

Figure 4.33: Recombination scheme for the Nils con�guration. The losses are reduced by
introducing 1

3
:2
3
beam-splitters at each telescope output.

With this new recombination scheme, the modulation e�ciency increases to:

� Mean modulation e�ciency: 0.080

� Maximum modulation e�ciency: 0.397

� RMS of modulation e�ciency: 0.081

Note that this recombination scheme could be adapted to any of the interferometers per-
forming internal modulation between two FTRCs (section 4.1.2), multiplying the modula-
tion e�ciency by 4/3. But even with this trick, the maximum modulation e�ciency hardly
reaches 40%.

4.4.4 Other con�gurations with inherent modulation

Other con�gurations with �ve telescopes on a circle can easily be found, since for each set
of angular positions of the telescopes, a double in�nity of complex con�gurations with a
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��4 rejection rate can be found. But the e�ciency of all those con�gurations is tampered
by the third order recombination scheme. Con�gurations with a maximum e�ciency above
40% should not exist, even if the new recombination scheme is used (remind that the higher
maximum e�ciency was 30% in section 4.1.2).

In order to improve the recombination e�ciency, let us investigate inherent modulation
between four telescopes, for which a second order recombination scheme is su�cient. It
is proven in appendix B.1.2 that complex con�gurations with four telescopes on a circle
cannot give a ��4 rejection rate, so that asymmetric transmission maps cannot be obtained
with circular 4-telescope con�gurations. On the other hand, appendix C.2 shows that, for
any given linear geometry, there exists a double in�nity of complex con�gurations with
a ��4 rejection rate, depending on the relative values of the phase shifts �3 and �4 with
respect to the �2 = 0 reference. Inherent modulation can therefore be implemented with
four in-line telescopes.

Linear con�gurations with four telescopes

We have seen in section 4.3 that delay compensation is a complicated task with linear
con�gurations: simple solutions have only been found for symmetrical arrays. We will
therefore restrict our study to symmetrical con�gurations with respect to the center of
the array, for which symmetrical telescopes (1-4 and 2-3) have the same size (�A-B-B-
A� con�gurations). A systematic study of these con�gurations has yield some interesting
properties:

� The outer telescopes must be smaller than the inner telescopes for a symmetrical
array to exist (diameter ratio B/A > 1).

� For each diameter ratio, a complex con�guration can be found whatever the (sym-
metrical) geometrical con�guration.

� For each diameter ratio, the maximum modulation e�ciency happens when the dis-
tances between the four telescopes are of the same order. Indeed when two telescopes
are close together, the interferometer becomes nearly equivalent to a Bracewell (when
the inner telescopes are close to the outer ones) or to a DAC (when the inner tele-
scopes merge), so that the entrance pupil becomes nearly real, and the asymmetry is
broken.

The search for an optimal modulation e�ciency has led to the following con�guration:

Diameter Position Phase shift
(arbitrary units) (arbitrary units) (rad)

Telescope 1 D1 = 0:62 L1 = 0 �1 = 1:793
Telescope 2 D2 = 1 L2 = 0:55 �2 = 0
Telescope 3 D3 = 1 L3 = 1 �3 = 4:367
Telescope 4 D4 = 0:62 L4 = 1:55 �4 = 2:576

The equalization of the optical paths can be achieved as in �gure 4.29. The associated
modulation e�ciency is of the same order as for linear arrays with internal modulation:
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Figure 4.34: The optimal linear interferometer with its two sub-nulling arrays. The complex
entrance pupil coe�cients are indicated near each telescope for each sub-interferometer.

� Mean modulation e�ciency: 0.163

� Maximum modulation e�ciency: 0.473

� RMS of modulation e�ciency: 0.166

The asymmetric outputs S1 and S2 of the two sub-interferometers are shown in �gure 4.35,
and the modulation map in �gure 4.36 together with the superposition of three rotated
maps. The modulation map shows two bright vertical lines on each side of the central null.
When rotated, this map produces an almost uniform modulation crown, about 50 mas
wide, as was the case for the linear con�gurations with internal modulation. Note that the
modulation e�ciency of these new con�gurations is not as high as when two DACs were
recombined in a 4-telescope array. This is not a contradiction to the �same geometry - same
e�ciency� property since the sub-nulling interferometers do not have the same number of
apertures this time.

Non linear con�gurations with four telescopes

In the course of the last two chapters, we have seen that Darwin's interferometric array
needs at least four telescopes. But it was proven that circular con�gurations with four
telescopes cannot achieve the required chopped output since one and only one GAC exists
for a given circular con�guration. So with four telescopes, only linear con�gurations have
been considered. Those con�gurations have good modulation e�ciencies, but a line-shaped
modulation map, which is not desired. It would therefore be worth to see if an arbitrary
complex con�guration with four telescopes, not restricted to lie on a circle any more, could
achieve both a good modulation e�ciency and a more uniform transmission map, by using
inherent modulation. This kind of con�guration has not been considered yet because the
optical path delays cannot be easily compensated in this case, since no point is equidistant
from the four telescopes and since long delay lines must be avoided. The only way to
compensate the optical path delays would be to add a constant optical path to one (or
more) interferometer arm, but the scale of the array could not be changed any more.

The analytical developments for arbitrary 4-telescope arrays are presented in appendix D.
The only di�erence with circular con�gurations is that the lengths Lk of the interferometer
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Figure 4.35: Transmission maps for the two sub-nulling interferometers of the optimal
linear con�guration. Field of view is 500�500 mas, array length 50 m and observation
wavelength 10 �m as usual. These maps are conjugated by central symmetry, which allows
internal modulation between them.

Figure 4.36: Modulation e�ciency map for the optimal linear con�guration. The right-
hand map is deduced by superimposing three maps shifted by 60Æ with respect to each
other.
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arms are not equal any more. As usual, we take telescope 1 as a reference, such that
L1 = 1, D1 = 1, Æ1 = 0 and �1 = 0. It is proven in appendix D that six free parameters
must be �xed in order to de�ne a single con�guration. These parameters are the angular
positions Æ2, Æ3, Æ4 of the three remaining telescopes, and the characteristics of telescope 2:
L2, D2 and �2.

Arbitrary 4-telescope con�gurations with inherent modulation have not been fully stu-
died, because of the large number of free parameters involved. The following approach has
been used:

1. Take L2 as a �xed parameter, and choose three arbitrary angles Æ2, Æ3 and Æ4.

2. For these four �xed parameters, �nd the parameters D2 and �2 which give the best
modulation e�ciency.

3. See if the modulation e�ciency can be improved by changing the angular parameters,
and try to converge to a maximum e�ciency by varying those parameters. The
optimal values of D2 and �2 do not change much during this phase.

4. The con�guration resulting from this procedure is a local maximum of the modulation
e�ciency.

By repeating this procedure for di�erent sets of initial parameters L2 and Æk, it was dis-
covered that the arbitrary con�gurations always converge towards linear con�gurations in
order to increase their modulation e�ciency. Three examples of local maxima are presented
below.

Local maxima of modulation

Optimum parameters Deduced parameters Modulation

L2 Æ2 Æ3 Æ4 D2 �2 L3 L4 D3 D4 �3 �4 Max Mean

1 1.5 50Æ 128Æ 250Æ 1 1.88 -1.69 -2.69 0.64 0.63 -2.58 -1.81 0.47 0.17

2 2.5 27Æ 161Æ 307Æ 0.3 2.61 -0.77 0.68 0.95 0.81 -1.98 2.04 0.44 0.14

3 1.2 52Æ 208Æ 300Æ 0.88 2.07 -0.99 3.84 0.96 0.20 -2.00 2.63 0.42 0.16

Figure 4.37 shows that these three con�gurations are in fact linear con�gurations. This
suggests that the best modulation e�ciencies are reached for linear arrays, as far as inherent
modulation between four telescopes is considered. Moreover symmetrical con�gurations (as
con�guration 1 in �gure 4.37), which are the only ones to allow simple delay compensation,
seem to have the highest e�ciencies among linear con�gurations. This last remark should
be taken with care since a complete study has not been done.

4.4.5 Conclusion

Inherent modulation is quite a promising technique, especially in the case of four telescopes
in a symmetric linear con�guration. In that case, a maximum e�ciency of almost 50% can
be reached, and only one detector has to be used. But the drawbacks associated to linear
con�gurations remain (see section 4.3.5).
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Figure 4.37: These three con�gurations have a local maximum in the modulation e�ciency,
in the general case of arbitrary 4-telescope con�gurations. All three are in fact linear
con�gurations.

4.5 New kinds of con�gurations

4.5.1 A dual 3-telescope nulling interferometer

A new kind of nulling interferometer, which provides a direct measurement of both visibility
amplitude and phase, has recently been proposed by Velusamy et al. [55]. Six telescopes
are con�gured to form two identical DACs, with baseline b � 30 - 50 m (see �gure 4.38).
They are placed on a longer baseline B (� 100 - 1000 m), and combined with a variable
phase shift in order to produce a chopped output. A short description of this interferometer
and of its capabilities is presented hereafter.

�

� � � � � �

�

�




* � � . � � � �

Figure 4.38: An artist sketch of the dual 3-telescope nulling interferometer, and a schematic
of the beam-combination. A chopped output is obtained by switching a variable phase shift
� in one of the nulled beams.

The basic design is that of a phase shifting two-element interferometer which measures
both the sine and cosine fringe amplitude. The sine and cosine fringes on the planets are
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obtained with the long imaging baseline B between the nulling elements. Because nulling
and imaging are independent, the characteristics of the null response (determined by b)
and spatial resolution (determined by B) are totally de-coupled. This is a big advantage
because in other con�gurations, increasing the baseline to achieve higher spatial resolution
would lead to narrower null which will result in resolving the central star.

If RDAC is the response of a DAC, then the response of the interferometer formed by
the nulled beams with a relative phase shift � reads

Iout = RDAC(1 + cos(�� �)) (4.5)

where � = 2� ~B � ~S=� is the external optical path di�erence between the two DACs, if ~S
represents the direction of the target planet. The two chopped outputs are obtained by
switching the phase shift between 0Æ and 180Æ (cosine chop) or between 90Æ and 270Æ (sine
chop):

ICos�chop = Iout(� = 0)� Iout(� = �) = 2RDAC cos � ; (4.6)

ISin�chop = Iout(� = �=2)� Iout(� = 3�=2) = 2RDAC sin� : (4.7)

A uniform nulling map is obtained by rotating the two DACs, and the (u; v) plane is
sampled by rotating the global interferometer around the central hub. Since � = 2� ~B �
~S=� = 2�(ux + vy), the chopped outputs (4.6) and (4.7) measure the real and imaginary
parts of the complex visibility at the u� v coordinates corresponding to ~B. The observed
complex visibility reads

Vobs(u; v) =

Z
x

Z
y

RDAC(x; y; �)I(x; y) exp(2�i(ux+ vy)) dx dy ; (4.8)

where � is the position angle of the baselines of the DACs (which are supposed to remain
parallel). This equation allows to reconstruct the image of extra-solar planets by a simple
Fourier transform of the observed visibilities. The observed intensity distribution is the
true image attenuated by the null response: Iobs(x; y) = RDAC(x; y; �)I(x; y).

4.5.2 Internal modulation between two coronagraphs

A strong limitation to single aperture coronagraphs is their low resolution. The use of two
separate coronagraphic telescopes could both improve their resolution and eliminate the
background signals by means of internal modulation. Two coronagraphs can be seen as two
sub-nulling interferometers. If their outputs are recombined with a ��=2 phase shift, the
two resulting signals S12 and S21 would simply have two shifted fringe pattern consisting in
equidistant vertical lines. Internal modulation between these two outputs would improve
the resolution since the distance between two successive fringes is inversely proportional to
the distance between the two telescopes, and would also eliminate the background signals
which have the same contribution in S12 and S21. This new possibility has the unique
advantage to only require two telescopes. Two detectors would be needed in order to
continuously detect the S12 and S21 signals.
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The new generation of coronagraphs, such as Roddier's phase-mask coronagraph or
Baudoz' hybrid coronagraph (respectively de�ned in sections 2.3.3 and 2.3.4), would pro-
bably be well suited for this new kind of con�gurations. On the other hand, the Achromatic
Interfero Coronagraph cannot be used as such because it produces two symmetrical images
of an o�-axis planet, which would thus be cancelled with internal modulation (just as the
symmetrical exo-zodiacal cloud).

4.6 Con�gurations without internal modulation

We have seen in chapter 3 that the �rst proposed con�gurations for the Darwin and TPF
missions did not use internal modulation. The planet signal modulation was achieved by
rotating the interferometer array. Since 1997, such con�gurations are not considered any
more. Let us brie�y summarize the reasons why external modulation has been abandoned.

� Modulation frequency. In order to reduce the background drifts and other 1=f� type
noises, a modulation at �high� frequency is needed. This cannot be achieved with
external modulation since the rotation frequency of a 50 m-long interferometer hardly
exceeds 10�4 Hz.

� Continuous rotation. A lot of time is spent in rotating the array, which consequently
reduces the observation time.

� Number of telescopes. In order to get rid of the spurious exo-zodiacal signal, an
asymmetric transmission map is required. This implies that at least four telescopes
are used, or even �ve if a circular con�guration is desired. These are the same
numbers as when internal modulation is used.

� Modulation e�ciency. The theoretical modulation e�ciency of the planet signal is
determined by the recombination e�ciency of the interferometer9: the factor a�ecting
the planet signal varies between zero and the maximum recombination e�ciency as
the planet crosses bright and dark fringes. But remember that only the odd multiples
of the fundamental frequency are used, since the even frequencies also include a strong
exo-zodiacal contribution (see section 3.2.3). All in all, the modulation e�ciency
should not be better than when internal modulation is used.

4.7 Conclusion: a menagerie of con�gurations

The systematic study of the Darwin aperture con�gurations undertaken in this chapter
has led to a huge number of con�gurations with a large variety of shapes and e�ciencies.
Now the problem we are faced with is the choice among this menagerie of con�gurations.
This important topic will not be comprehensively discussed here. We only present some
criteria that might lead to an optimal con�guration.

9The recombination e�ciency reaches 100% for a 4-telescope interferometer, but only 60% for a 5-
telescope one.
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4.7.1 Criteria for an optimal con�guration

� Modulation e�ciency. This is probably the most important criterion. The maximum
e�ciency (78%) happens for the 5-telescope linear con�guration (5Lin2DAC) with
internal modulation between two regular DACs. Among circular con�gurations, the
best e�ciency (65%) happens for the 6-telescope con�guration with internal modula-
tion between two GACs (RL2(1,1,0.707,0,0,0.707)). Note that the 4-telescope linear
con�guration with equal size telescopes and modulation between two irregular DACs
(4LinEqual2DAC) is also very interesting (maximum e�ciency 67%). The con�gu-
rations with a third order recombination scheme have lower e�ciencies.

� Uniformity of the modulation map. This is an important criterion in order to achieve
planet detection with a minimum time and power consumption. The 1-2-3-5 con�gu-
ration with an angular parameter of 40Æ (RL3(1,0.449,0,0.293,0,0.844)) is the best on
that point (max 41%), together with the Daisy (or Nils) con�guration (max 30% or
40%). On the other hand, large rotations must be applied to linear con�gurations in
order to make their modulation map uniform. Moreover, the �rst maxima of linear
con�gurations are sometimes faint and narrow.

� Number of detectors. On that point, con�gurations with inherent modulation are the
best since they only use a single detector. Other con�gurations generally use two
detectors, except in the case of three sub-interferometers, where six detectors must
be used. This is a serious drawback to the regular hexagon and other con�gurations
of that family.

� Number of telescopes. Linear con�gurations typically use only four telescopes, whereas
circular con�gurations need at least �ve telescopes. This is not a decisive advantage.
A maximum of six telescopes is a practical limitation due to the size of an Ariane 5
fairing. Note that the use of two coronagraphic telescopes drastically reduces that
number.

� Equal size telescopes. It is preferable that all telescopes have the same size in order to
reduce the manufacturing cost. Circular con�gurations were designed to account for
this fact, but on the other hand, only one linear con�guration (the 4LinEqual2DAC)
achieves the size equality.

� Recombination optics. On that point, the linear con�gurations have the serious draw-
back that the light beams must be re�ected on neighboring telescopes in order to
achieve the optical path equality. In the particular case of the 5Lin2DAC con�gu-
ration, a simple way to compensate the optical delays has not even been found. On
the contrary, circular con�gurations can be quite simple, especially if only two GACs
are involved (as in the RL2(1,1,0.707,0,0,0.707) con�guration).

� Versatility. The regular OASES con�guration is very versatile since more than one
recombination scheme can be used with the same geometry, resulting in di�erent e�-
ciencies and rejection rates. The RL3(1, 0.449,0,0.293,0,0.844) and RL3(1,1,0,0.532,
0.532,0) are two circular con�gurations (composed of two triangles shifted by 40Æ)
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which show a good complementarity: exceptional sky coverage for the �rst, very high
e�ciency (59%) for the second.

4.7.2 Final con�guration choice

The �nal choice for a con�guration will have to take into account all these criteria, and
probably others as well. Based on the previous criteria, and on my personal opinion, the
best con�gurations are the RL2(1,1,0.707,0,0,0.707) among circular con�gurations, and
the 4Lin2DAC or 4LinEqual2DAC among linear con�gurations. Their characteristics are
summarized in the table below.

RL2(1,1,0.7,0,0,0.7) 4Lin2DAC 4LinEqual2DAC
Max e�ciency 65% 51% 67%
Mean e�ciency 13% 18% 18%
Map uniformity Fair Fair Bad
Detectors 2 2 2
Telescopes 6 (equal size) 4 (di�. size) 4 (equal size)
Recombination Very easy Complicated (re�.) Complicated (re�.)
Versatility Bad Good Fair

Finally a very important criterion which is not discussed in this work is the ability to
reconstruct an image of the planet from the nulled signal. Except for a cross-correlation
method designed by Angel and Woolf [3], very little work has been done on that topic
yet. Modelization of the in�uence of internal modulation on imaging will be an important
step for the Darwin mission, and will probably shed a new light on the �nal con�guration
choice.
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Nulling with the VLTI

5.1 Context and scienti�c goals

We have proven in section 3.4.2 that the exo-zodiacal light is one of the main contributors
to the background noise for the Darwin mission. Its level was computed assuming the
same amount of dust as in our Solar System, and its total contribution was found to be
about 5 times smaller than the contribution from the local zodiacal light (for a spacecraft
at 1 AU from the Sun). But the assumption of a �Solar System twin� is not based on any
physical argument, and Darwin's signal-to-noise ratio (SNR) could well be limited by the
exo-zodiacal light if the dust cloud was much denser than ours. An exo-zodiacal cloud 10
times brighter than our own would only reduce the SNR by a factor 1.5 (or equivalently,
increase the integration time by a factor 2.2), but an exo-zodiacal cloud 100 times brighter
than ours would increase the integration time by a factor about 14, which is not acceptable.
Thus before precisely de�ning the Darwin (or TPF) mission, direct measurements of the
amount of warm dust around nearby stars should be undertaken. This is one of the main
conclusions of the �Exo-zodiacal Dust Workshop� that was held in October 1997 at the
NASA Ames Research Center1.

Exo-zodiacal dust surveys can be carried out with infrared facilities such as SIRTF,
SOFIA or ALMA if available early enough, or even with the HST2, but will mostly rely on
ground-based infrared interferometers such as the Keck Interferometer, the Large Binocular
Telescope (LBT) and the Very Large Telescope Interferometer (VLTI). In order to detect
exo-zodiacal clouds against the blinding star, these interferometers must use the nulling
technique. While a nulling instrument is already scheduled for both Keck (2001) and LBT
(2004), a concrete project is not planned yet for the VLTI. An agreement between ESA and
ESO has recently been found concerning the installation of a nuller as a guest instrument
on the VLTI, but its characteristics are still to be de�ned. The nuller should achieve two
parallel goals:

1. Validation of the nulling technique.

1Backman's report available at http://astrobiology.arc.nasa.gov/workshops/1997/zodiac/index.html.
2NASA is now studying a coronagraphic capability as part of an imager (WF3) that could be installed

on HST in 2002. This instrument should have the capability to detect 100-zodi clouds and resolve their
orientation around nearby stars.

112
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2. Characterization of exo-zodiacal clouds.

In order to be bene�cial to the Darwin mission, the nulling instrument should be
sensitive to exo-zodiacal light down to the level which tampers Darwin's performances,
i.e., exo-zodiacal clouds 10 times brighter than our own. If a large proportion of stars are
found to have a zodiacal cloud brighter than this limit, the size of the Darwin apertures
should probably be reconsidered.

5.2 Exo-zodiacal cloud properties

Before discussing the nulling potential of the VLTI, let us �rst brie�y discuss the structure
and properties of exo-zodiacal clouds. This section is mostly based on the Executive
Summary of the Exo-zodiacal Dust Workshop and on Backman's report [4], both available
at the URL mentioned in a previous footnote.

5.2.1 Dust sources

The dust in our solar system has three principal constituents: asteroidal and cometary
debris and interstellar grains (see TPF [9], chapter 5). The main asteroid belt seems to be
the main source for the smooth zodiacal cloud: debris are released by asteroid collisions
and erosion of small asteroids. Its relative contribution is supposed to lie between 50%
and 90%. Symmetric bands of thermal emission near the ecliptic have been identi�ed as
�families� of asteroid collision debris that drift past the Earth toward the Sun from sources
in the main asteroid belt. Further out, the Kuiper belt can supply grains to the inner Solar
System via radiative drag due to sunlight, known as the Poynting-Robertson (PR) e�ect.

COBE data indicate the presence of some local dust that is not distributed following the
wedge of the main belt asteroid debris and is thus probably cometary in origin. Extensive
dust trails �ll the orbits of periodic comets with mm-sized dust and meteors, which are
eventually perturbed into the zodiacal dust cloud and sporadic meteor population. Comet
activity and collisions should contribute between 10% and 50% to the zodiacal dust near
Earth.

The last contributor is the interstellar medium, which is expected to be a signi�cant
source of the smallest particles in the outer solar system (cold dust). Its contribution to
warm dust near the Earth should however be small (about 0.1%). Note that warm dust
(temperature about 300 K) is the most important background source for Darwin because
its �ux peaks around 10 �m, and because it is mostly concentrated between 0.01 AU3 and
2 AU (thus covering the habitable zone).

5.2.2 Dust density

One of the most important conclusions of the Exo-zodiacal Dust Workshop is that we do
not have the understanding at present to allow theoretical prediction of the amount of dust

3The dust destruction temperature is about 1500 K, which corresponds to a sublimation radius of about
0.01 AU.
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at terrestrial temperature in a given planetary system even if it is known to contain a cold
dust disk and/or planets. One can however de�ne approximate bounds to the amount of
dust by means of theoretical and observational considerations:

� Lower limit. The necessary presence of comets in exo-systems might imply a very
uncertain general lower limit of 1/10 the zodiacal dust density. Planetesimal models
of planet formation produce an asteroid belt in only 50% of the trials.

� Upper limit. IRAS measurements indicate a few cases among nearby stars of more
than 100-zodi clouds of warm dust. On the other hand, approximately 15% of stars
of spectral types A, F, G and K should have 100 times or more cold dust than our
own solar system. Theoretical calculations suggest that there may be a natural upper
limit to steady state density of warm dust, because of mutual dust collisions.

Another prediction of theoretical models is the time-dependence of the cloud density
(see TPF [9]). Collisions of 10 km-radius bodies should occur in the main belt about every
107 years. One such collision could completely recreate the present zodiacal cloud. A model
history of density shows a general decline as grain fall into the Sun due to PR drag, but
punctuated by large transient increases due to the subsequent collisions between fragments.
Planet searches should be directed towards older stellar systems to avoid generally higher
dust density.

5.2.3 Dust distribution and brightness

IRAS data have brought considerable information on dust density in our zodiacal cloud.
Based on these data, a model for the zodiacal cloud has been published. This model has
already been used in section 3.4.2, equation (3.24), in order to evaluate the contribution of
a �Solar-type� exo-zodiacal cloud to the total noise for the Darwin mission. It relies on a
grey-body approximation, with emissivity "(r) = 1:114 � 10�7r�0:8 (r being the distance
from the star in AU), and dust equilibrium temperature T (r) = 266 r�0:36.

Figure 5.1 shows the face-on optical depth of the smoothly varying portion of the
Solar System zodiacal dust (as seen from 10 pc) as a function of radius from near the
Sun to 100 AU for the COBE model parameters. The COBE model spatial distribution
� � 0:71 � 10�7r�0:39 was assumed valid from near the Sun to 100 AU (note that the
IRAS model has a steeper gradient than the COBE model). The same �gure also shows
typical temperatures in the cloud assuming emissivity = 1. The corresponding face-on
surface brightness is displayed on the right-hand side of �gure 5.1 at wavelengths of 8, 10
and 12 �m. The hot inner regions of the disk are much brighter in the mid-infrared range
because of their higher temperature and optical density.

The integrated �ux from the dust sublimation radius outward is shown in �gure 5.2
for the IRAS model. It is particularly interesting to note that 90% of the �ux is included
inside a radius of about 1 AU. This implies that, in order to characterize the exo-zodiacal
IR emission, the nuller should have a spatial resolution better than 1 AU, i.e., better than
100 mas in the case of a 10 pc star. A spatial resolution of order 0.1 AU is even desirable.
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Figure 5.1: Thermal model of a 1-zodi cloud around a Solar-type star viewed from 10 pc
based on the COBE zodiacal model (from Backman [4]). Left: Disk vertical optical depth
and temperature versus distance from the central star, compared with a possible pro�le
of the cold dust disk of � Pic. Right: Thermal emission surface brightness for several
wavelengths around 10 �m.
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Figure 5.2: Integrated �ux at 10 �m versus distance from the star for a 1-zodi cloud around
a Solar-type star viewed from 10 pc, based on the IRAS zodiacal model. Note that 90% of
the �ux comes from the region between 0.01 and 1 AU.

5.3 Nulling with the VLTI

The ESO Very Large Telescope (VLT) at the Paranal Observatory (Atacama, Chile) is
one of the world's largest and most advanced optical telescope. It presently comprises four
8.2-m re�ecting Unit Telescopes (UTs) and three moving 1.8-m Auxiliary Telescopes (ATs),
the light beams of which can be combined in the VLT Interferometer (VLTI).
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5.3.1 Array con�guration

A layout of the VLTI is shown in �gure 5.3. The minimum and maximum distances between
two UTs are respectively 46.6 m (between UT2 and UT3) and 130.2 m (between UT1 and
UT4). The distance between two ATs on the main east-west track varies between 8 m and
128 m by steps of 8 m.

Figure 5.3: Layout of the individual VLTI elements. Unit Telescopes are shown as large,
�lled circles, and the possible locations of ATs indicated by small, �lled circles. These
circles represent the diameters of the primary mirrors when pointed at the zenith. Solid
lines show the location of tracks for transporting ATs between stations.

With this con�guration, there seems to be three main possibilities for a nulling instrument4:

� Bracewell interferometer between two UTs. This would be the same nulling con�g-
uration as for the Keck and the LBT, but with a di�erent baseline. In order not to
over-resolve the exo-zodiacal cloud, and by the same way, not to resolve the stellar
disk, the minimum distance between two UTs should be chosen. With a 46.6 m
baseline, the angular separation between the central null and the �rst bright fringe is
22 mas for an observation wavelength of 10 �m. This angular resolution ful�lls the
high resolution requirement (22 mas correspond to 0.22 AU for a typical system at
10 pc).

4The following discussion is largely based on two �brainstorming� meetings that were held at the Meudon
Observatory in January 2001. I would like to thank all the participants for their enthusiasm and for
welcoming me in Meudon.
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� DAC interferometer between three ATs. In order to have a broader null, three ATs
can be used in a DAC con�guration (see section 3.2.2 for the de�nition of a DAC).
In this con�guration, the diameter ratio is 1:

p
2:1, so that the e�ective size of the

two outer telescopes is 1.27 m instead of 1.8 m. Since it uses smaller telescopes, this
con�guration has a lower sensitivity. The overall baseline can vary between 16 m and
128 m on the main east-west track.

� Single aperture coronagraph. The last simple possibility consists in using a single UT
with a coronagraph. In order to have a su�cient resolution (better than 100 mas),
the observation wavelength should be smaller than 3 �m. However, this con�guration
would be of no help in demonstrating the nulling technique.

These three possibilities are studied in more detail in the following sections.

5.3.2 Choice of the wavelength

The choice of the observation wavelength depends on three main factors: the contrast be-
tween the star and the exo-zodiacal cloud as a function of wavelength, the atmospheric
emissivity in the infrared range and the thermal emission of optical surfaces. Other impor-
tant factors are the spatial resolution and the residual phase errors, which depend on the
wavelength. Let us �rst evaluate the wavelength dependence of the exo-zodiacal �ux, and
compare it to the stellar �ux. This will give us an idea of the rejection rate to be reached.

Based on the IRAS model, the integrated exo-zodiacal �ux peaks at a wavelength
of about 3 �m (see �gure 5.4). The curve naturally looks like a classical Planck curve,
corresponding to a mean temperature of about 1000 K. This is not surprising since the hot
inner part of the cloud has a great in�uence on the overall emission.
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Figure 5.4: Left: Integrated �ux (in W/m2/�m) versus wavelength for a 1-zodi cloud
around a Solar-type star viewed from 10 pc, based on the IRAS zodiacal model. The use of
W/m2/�m allows an easy estimation of the total �ux in a given spectral band: it is simply
the area under the curve across the band. Right: Flux contrast between the exo-zodiacal
cloud and the star.
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The right-hand side of �gure 5.4 shows the contrast between the exo-zodiacal �ux and
the star �ux across the relevant spectral range. As in the planet/star case, the contrast is
lower in the mid-infrared (about 10�4) than in the near-infrared (about 10�6). If the nuller
performance does not allow a ��4 rejection rate, the high contrast in the near-infrared
range will probably not allow secure exo-zodiacal �ux measurement.

Background thermal emission

Let us now evaluate the contribution from the optical surfaces and the atmosphere. The so-
called �infrared atmospheric windows� are listed in the table below for wavelengths between
2 �m and 13 �m, together with the sky brightness in the four bands. The sky brightness
mainly comes from the thermal emission of the atmosphere in the L, M and N bands, while
the K band is dominated by OH-radical �uorescence. Note that the N band is actually
divided into two parts, the larger of which lies between 10 and 12 �m. This part of the
spectral band, which has a good transparency, will be used in the following discussions.

Mean sky brightness (on top of Mauna Kea, 4200 m)

Photometric band K L M N
Mean wavelength (�m) 2.2 3.4 5.0 10.2
Band size �� (�m) 0.40 0.55 0.3 5
Mean sky brightness (Jy/arcsec2) 0.015 0.16 22.5 250
Sky transparency high fair low fair

Now that the possible observation wavelengths are known, the thermal emission of
optical surfaces in these bands must be computed. We will see that this contribution is
more than ten times stronger than the contribution from the atmosphere, because the
optical surfaces of the VLTI are not cooled: the whole bunch of optical surfaces ahead the
nuller is assumed to behave like a grey-body emitter of temperature 280 K, with a grey
emissivity of about 60% in ideal conditions. This large emissivity comes from the fact
that, before recombination, light beams undergo about 18 re�ections on coated mirrors
with transmission ' 97%, yielding an overall transmission of about 40%5. In fact, a total
emissivity of 60% is only achieved if the mirrors are perfectly clean, which is very optimistic
since one cannot prevent dust particles from settling down on the mirrors. These small
particles generally have a high emissivity, so that a more realistic value for the overall
optical surfaces emissivity is about 100%. An estimation of their overall contribution to
the thermal background is given in the table below.

Photometric band K L M N
Optical surfaces brightness (Jy/arcsec2) 0.006 6.33 253 6581
Mean sky brightness (Jy/arcsec2) 0.015 0.16 22.5 250
Total background (Jy/arcsec2) 0.021 6.49 275.5 6831

The thermal background is very bright in the mid-infrared (i.e., in the N band). This
is an important drawback of mid-infrared ground-based observation. Large apertures are

5Values from Vincent Coudé du Foresto, personal communication.
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required in order to reach a good signal-to-noise ratio in an acceptable integration time.
The nuller will have to get rid of the background emission by means of chopping whatever
the wavelength.

The two noise sources (thermal background and star) have opposite in�uence on the
choice of the wavelength. The �nal choice will therefore depend on the nulling con�guration.
In the next paragraphs, �back-of-envelope� signal-to-noise calculations are carried out for
the three con�gurations. Note that the relevant wavelength for Darwin is around 10 �m,
so that the N band seems a priori the most appropriate. However, exo-zodi measurements
in the K band can be extrapolated to the mid-infrared range by means of theoretical models
(the IRAS model for example), if the near-infrared dust albedo is known (estimations are
already available, see Backman [4]).

5.3.3 Bracewell interferometer with two UTs

In the following sections, we assume that a means to suppress the thermal background is
available (some kind of chopping, see section 5.4.1). We will only consider the two most
transparent spectral bands, i.e., K (� = 2 - 2.4 �m) and N (second part of the band:
� = 10 - 12 �m), with a preference for the N band because it better corresponds to the
Darwin spectral range. In this section, only theoretical performances are evaluated, on a
10 pc Solar System twin, in order to assess the feasibility of each con�guration. The actual
performances have to take technical limitations into account, which are brie�y discussed
in section 5.4.

The Airy radius for a 8 m-class telescope working at 11 �m is about 300 mas, which
corresponds to 3 AU from the central star. Since the exo-zodiacal �ux is mostly concen-
trated in a 1 AU radius, we will reduce the �eld of view (and by the way reduce the thermal
background) by only keeping a coherence étendue S
 = �2 at each telescope output6. The
�eld of view is now 176 mas in radius. Let us �rst compute the photon noise from the back-
ground and compare it to the exo-zodiacal signal, which is reduced by the fringe pattern by
a factor ' 3. The total signal from the thermal background is F�;back = 6831
 = 664:8 Jy,
or equivalently 2:31�1010 ph-e�/s over the 10-12 �m wavelength band, taking into account
the optical transmission of 40% and assuming a quantum e�ciency of 60% for the detector.
The associated noise scales as the square root of the mean photon �ux: Nback � 1:52� 105

ph-e�/s1=2. The �ux from the exo-zodi (185 �Jy) is reduced to F�;exo = 64:4 �Jy by the
fringe pattern, or equivalently Fexo = 2:24� 103 ph-e�/s.

These values are summarized in the table below. They prove that a 1-zodi cloud is
very di�cult to detect: a SNR of 5 would require about 30 hours of integration, while a
SNR of 2 would still require 5 hours. On the other hand, the 10-zodi level we took as a
requirement for the nuller is easily detected: a SNR of 10 can be achieved in 1.3 hours.

Signal and noise for the Bracewell interferometer

nulled exo-zodi nulled star background noise
64.4 �Jy 306 �Jy

) 2:24� 103 ph-e�/s ) 10:6� 103 ph-e�/s 152� 103 ph-e�/s1=2

6We have proven in section 3.4.2 that the SNR is maximum for an optical étendue S
 = 1:096�2.
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Let us now compute the rejection rate of the Bracewell interferometer for the central
star, whose angular radius is 0.47 mas (Sun-like star at 10 pc). Integration of the fringe
pattern over the stellar disk yields a rejection ratio � = 4:25 � 103. The �ux from the
star being about 1.3 Jy at 11 �m, the total �ux after recombination is 306 �Jy, about
5 times larger than the �ux from the exo-zodi. The situation would even be worse in
the K band, since the fringe pattern (and hence the null) would be 5 times narrower.
This is a serious drawback of the Bracewell interferometer: even after recombination, the
contribution from the star is still higher than the exo-zodiacal signal. The situation would
naturally be better for brighter exo-zodi or for more distant stars, which are seen with a
smaller angular diameter and thus induce less leaks.

However there seems to be a means to get rid from this unwanted contribution: by
slightly shifting the fringes with OPD variations in the delay line, only the stellar �ux
signi�cantly varies because the star is not perfectly centered on the dark fringe any more.
On the other hand, the exo-zodiacal �ux does not change signi�cantly if the OPD variations
are small enough, because of its symmetry. Since the fringe pattern is known (��2 rejection
rate), the contribution from the star can be evaluated with this trick, and then removed
from the signal. Note that this technique would not be possible if the contribution of the
exo-zodi was 100 times smaller than the residual stellar �ux because of the uncertainties
in stellar mid-IR spectral energy distributions.

5.3.4 DAC interferometer with three ATs

The DAC interferometer badly su�ers from the small size of the Auxiliary Telescopes
(e�ective aperture diameter of 1.27 m). Even if we only keep a coherence étendue S
 = �2

at each telescope output, the angular radius of the �eld of view is still large (about 1100 mas
at 11 �m) compared to the size of the exo-zodiacal cloud. The �ux from the thermal
background being proportional to the beam étendue, its level remains the same as in the
previous case, while the signal from the exo-zodi strongly decreases, proportionally to the
telescope surface S. Therefore, a 1-zodi cloud is not detectable at all: a SNR of 1 in the
N band would require an integration time of more than 200 hours! Detection of 10-zodi
clouds would even be di�cult, since 20 hours of integration are needed in order to get
a SNR of 3. The use of a DAC interferometer composed of three ATs is therefore not
suitable for exo-zodi detection in the mid-infrared range, and thus we are forced to go to
the near-infrared (K band).

In the K band, the thermal background is not an issue any more. Its contribution is
about 3.4 mJy if we keep a coherence étendue as usual (the angular radius of the �eld of
view is 227 mas in this case). The main trouble now comes from the high contrast between
the exo-zodiacal light and the central star (about 10�6 in the K band). A rejection rate of
order 106 can easily be reached with a DAC since it has a ��4 rejection rate, but the broad
null also cancels a large part of the inner hot zodiacal cloud, and signi�cantly reduces its
total contribution. The rejection rate strongly depends on the baseline since it determines
the fringe spacing. The possible distances between two neighboring ATs are 8 m, 16 m,
32 m and 64 m. The table below shows that the contrast remains quite high whatever the
baseline. The 16 m baseline has the lower contrast (about 18), but it is still 3 times higher
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than for the Bracewell interferometer. Moreover, the exo-zodiacal signal has dropped
to 0.08 ph-e�/s, which is not acceptable. For all these reasons, a DAC interferometer
composed of three ATs does not seem appropriate for exo-zodiacal cloud characterization.

Contrast for the four possible baselines

no nulling nulling (64 m) nulling (32 m) nulling (16 m) nulling (8 m)
star 29 Jy 437 �Jy 27.4 �Jy 1.72 �Jy 0.107 �Jy
exo-zodi 31 �Jy 1.39 �Jy 0.304 �Jy 0.094 �Jy 0.0045 �Jy
contrast 9:35� 105 314 90.1 18.3 24

5.3.5 Coronagraphy with a single UT

As already mentioned above, the use of a coronagraph on a Unit Telescope has two main
drawbacks: the inevitable use of short wavelengths (K band or shorter) to achieve a su�-
cient spatial resolution, and the fact that it will not demonstrate nulling interferometry for
the Darwin mission. Observing in the K band with a 8.2 m telescope yields an angular
resolution of 67 mas, which is su�cient for exo-zodiacal cloud measurements, but it also
gives a contrast ratio as high as 106, which must be compensated by the coronagraph. Even
if theoretically reachable with the new generation of coronagraphs, a rejection rate of order
106 is still to be demonstrated on the ground. To date, the study has been restricted to
the densest disk. Coronagraphic techniques will probably be an indispensable complement
to nulling interferometry in the future.

5.4 Technical considerations

5.4.1 Dual nulling

In order to get rid from the unwanted thermal background, a dual-nuller con�guration is
proposed in [4], in the case of a Bracewell interferometer. With this con�guration, each
aperture is divided in the pupil plane and its light fed into nulling combiners. The e�ective
baseline for these interferometers is approximately 4 m. The output of these �aperture
nullers� is then fed into the interferometer nuller already described. A second interferometer
nuller is added to use the second nulled output of each aperture nuller. Four delay lines
are shown in the system (�gure 5.5), one preceding each input of the aperture nullers.
By adjusting the optical delay lines, all combinations of aperture nulling �on� or �o�� and
interferometer nulling �on� or �o�� can be achieved. Switching among these con�gurations
can be used as source chopping in order to calibrate the background (see Backman [4] for
details). It could also help cancel the stellar leaks. A drawback of this approach is that a
great part of the exo-zodiacal emission is cancelled by the aperture nullers because of their
small baseline (and hence large fringe spacing). Other possibilities have been investigated
for the Keck nulling interferometer, and could overcome this drawback7.

7Personal communication from B. Mennesson.
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Figure 5.5: Block diagram for achromatic dual-nulling (one nuller at each aperture plus
one for the 2-telescope interferometer as a whole), taken from [4].

5.4.2 Limitations to the rejection rate

The main practical limitations to the rejection rate and means to �ght them are presented
below (mainly based on Backman [4] and on the Meudon meetings).

� Optical path jitter. Deep nulls require a high degree of path length stability between
the two arms of the interferometer. The rejection rate will therefore strongly depend
on the performances of the fringe tracking system. A fringe sensor unit will be part
of the PRIMA8 instrument at the VLTI. The speci�cations for PRIMA (phase error
about 30 nm rms at 10 �m) should ensure a very good null in the N band. The
constraints on phase error are more restrictive in the K band, and might not be met.
This would add to the fact that stellar leaks are already the main trouble in the near-
infrared range. Note that PRIMA will not be available before 2003. Another fringe
sensor unit (FINITO) will be available at the end of 2001, with lower performances.

� Wavefront aberrations. Corrugations in the stellar wavefront caused by atmospheric
turbulence and imperfect optics reduce the interferometer fringe visibility and hence
the null depth. Adaptive optics will provide low order corrections to the wavefront
(MACAO9 for the VLTI, available for all UTs by early 2004), while single-mode
spatial �ltering can be used to signi�cantly improve the correction (especially for
high order aberrations). The current baseline for MACAO is optimized for use in
the 1 - 2.5 �m wavelength range. A high Strehl ratio in the N band would be very
bene�cial to the nulling instrument. Adaptive optics systems are not scheduled yet
for the Auxiliary Telescopes.

� Scintillation. Unequal intensities between the two beams of the interferometer pro-
duce imperfect fringe visibility. In order to have good nulling performances, an
amplitude matching system might be required.

8Phase-Referenced Imaging and Microarcsecond Astrometry.
9The MACAO-VLTI system is a 60 element curvature adaptive optics system operating at the Coudé

focus of one of the VLT UTs delivering a corrected wavefront to the VLTI delay lines.
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All these limitations tamper the SNR by an amount that is still to be evaluated in the light
of VLTI's instruments performances. Moreover, even if signal-to-noise calculations show
that exo-zodi are theoretically detectable, the derivation of their physical parameters from
the observations has not been considered yet.

5.4.3 Current projects

Nulling interferometry has already been used with success at 10 �m with two 1.8 m tele-
scopes of the Multiple Mirror Telescope (Hinz et al. [22], [21]) without adaptive optics nor
fringe tracker, and without cooled optics. When the atmosphere caused the wavefronts
to be (by chance) exactly out of phase, the entire stellar Airy pattern disappeared. By
selecting the minimal �ux images from a series of short exposures, a rejection rate of order
25 has been reached, allowing the detection of dust nebulae around � Orionis and R Leonis.
(This was one of the last observations with the MMT, which has now been dismantled and
has being replaced by a 6.5 m mirror).

A new nulling instrument (BLINC) which will use two sections of the 6.5 m MMT is
currently being built by Hinz et al. [23]. It will bene�t from an adaptive optics system and
a common-path phase-sensing system to suppress all but 10�4 of the stellar �ux. This level
of cancellation, combined with cryogenically-cooled optics, will allow to detect zodiacal
emission down to the mJy level at 11 �m, i.e., as faint as 10-20 times the solar level for a
star at 10 pc. Two other nulling instruments are scheduled for the Keck (2001) and LBT
(2004) interferometers, both with the goal to detect exo-zodiacal clouds at the solar level for
a 10 pc star. Note that these two instruments are restricted to the northern hemisphere, so
that the VLTI is the only possibility to observe southern hemisphere targets as a precursor
to Darwin.



Conclusions

Since its 1993 proposal, the IRSI-Darwin concept, aimed at exoplanet detection by means
of infrared interferometry, has evolved in many ways: on the one hand, studies have proven
the theoretical feasibility of the mission, and suggested ways to improve its e�ciency;
on the other hand, technological developments are currently underway, on ground-based
instruments as well as in the context of space-borne missions, in order to demonstrate the
practical feasibility of Darwin.

The present work is a theoretical contribution to the development of the Darwin
nulling interferometer. Nulling interferometry is a technique intended to suppress all the
light coming from a blinding star by means of destructive interference, in order to reveal
the star's potential planetary companions. Once the starlight has been cancelled, the main
obstacle to planet detection is the emission of zodiacal dust in our own solar system as
well as around the target star. The present thesis mostly focuses on internal modulation, a
recent technique aimed at cancelling such spurious background signals in a single process.

The basic idea of internal modulation is to apply a variable phase shift between the
nulled outputs of two or more interferometers sharing the same telescopes, and then re-
combine these outputs to make the detection. Under certain conditions, only the signal
emanating from the planet will be modulated as a result of this process. This signal then
can be retrieved easily by synchronous demodulation. In the present work, a comprehensive
investigation of possible con�gurations of a telescope array with internal modulation has
been undertaken. This investigation has led to a number of new possible con�gurations,
whose performances have been compared with that of the current Darwin con�guration.
A factor of two has been gained in the sensitivity of the interferometer to the planetary
signal. This improvement will reduce by a factor of four the time required to detect and
characterize exoplanets, and therefore will allow the study of many more planetary systems
than initially anticipated.

The road-map of theoretical and technological developments leading to the �nal Dar-
win design is still very long, so that the spacecraft is not likely to be launched before 2012.
In the context of selecting a con�guration, the present work should be followed by two kinds
of studies. The �rst one concerns the synthesis of an image with a nulling interferometer
which, just like any interferometer, only produces fringes but no direct image. The ability
of each con�guration to recover an image of the planetary system will probably constitute
a very important criterion in the choice of the �nal con�guration. The second idea to
pursue is the design of a nulling instrument for the VLTI. Signal-to-noise calculations have
proven that this instrument should be able to characterize exo-zodiacal clouds down to the
10-zodi level, but much work still remains to be done.
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Appendix A

Transmission map symmetry

After reading section 3.2.3, one may think intuitively that a real generalized pupil is a
necessary and su�cient condition to have a centro-symmetric transmission map, i.e., an
even interferometer response: R(�~�) = R(~�). Remember that the generalized entrance
pupil (3.6) is real when all phase shifts �k are whole multiples of �, so that all ej�k are
real1. We will prove below that this condition is su�cient but not necessary, since non-real
pupils can also lead to an even interferometer response.

A.1 Su�cient condition

It is straightforward to prove that (�k = 0[�]) ) (R(�~�) = R(~�)). Let us de�ne the
complex quantity Z(~�) by the relation

R(~�) =

�����
nX
k=1

Dke
j2�( ~Lk�~�)=� ej�k

�����
2

=
���Z(~�)���2 : (A.1)

The condition �k = 0[�] implies that all ej�k are real, so that the only complex factor in
Z(~�) is ej2�( ~Lk�~�)=�, which implies

Z(~�) =
nX
k=1

Dke
�j2�( ~Lk�~�)=� ej�k = Z(�~�) ; (A.2)

where the �overline� sign represents complex conjugation. Now, it is obvious that

R(�~�) =
���Z(�~�)���2 = ���Z(~�)���2 = ���Z(~�)���2 = R(~�) : (A.3)

A.2 Necessary condition

The necessary condition writes (R(�~�) = R(~�)) ) (�k = 0[�]). We will prove that this
condition is not true when the number of telescopes is larger than two, since in that case

1This will be noted �k = 0[�] in the following discussion, which means that �k is equal to zero to within
an integer multiple of �.
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we may �nd even transmission maps associated with non-real generalized pupils (i.e., there
is at least one k such that �k 6= 0[�]).

Let us write the equation R(~�) = R(�~�) explicitly:���Z(~�)���2 = ���Z(�~�)���2
) Z(~�)Z(~�) = Z(�~�)Z(�~�)

)
nX
k=1

Dk e
j 2�
�
~Lk�~� ej�k

nX
l=1

Dl e
�j 2�

�
~Ll�~� e�j�l =
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�j 2�

�
~Lk�~� ej�k
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j 2�
�
~Ll�~� e�j�l

)
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k=1

nX
l=1

DkDl e
j 2�
�
( ~Lk� ~Ll)�~� ej(�k��l) =
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k=1

nX
l=1

DkDl e
j 2�
�
( ~Ll� ~Lk)�~� ej(�k��l)

)
nX
k=1

nX
l=1

DkDl sin
�
2�
�
( ~Lk � ~Ll) � ~�

�
ej(�k��l) = 0

The real and imaginary parts of the last equation must cancel out separately for all possible
values of ~�, giving the two following equations:

nX
k=1

nX
l=1

DkDl sin
�
2�
�
( ~Lk � ~Ll) � ~�

�
cos(�k � �l) = 0

nX
k=1

nX
l=1

DkDl sin
�
2�
�
( ~Lk � ~Ll) � ~�

�
sin(�k � �l) = 0

9>>>>=
>>>>;

for all ~� : (A.4)

The �rst of these two equations will always be true, since cosine is even and sine odd: the
(k; l) and (l; k) terms are of opposite sign, and will cancel out. On the other hand, the
terms with k = l are all zero because the di�erence ~Lk � ~Ll cancels out. Therefore, the
only equation to satisfy is

nX
k=1

nX
l=1

DkDl sin

�
2�

�
( ~Lk � ~Ll) � ~�

�
sin(�k � �l) = 0 , for all ~� : (A.5)

A.2.1 Two telescopes

If we take the origin of the axes at the middle of the segment joining the two telescopes,
then ~L1 = � ~L2, so that (A.5) becomes:

D1D2 sin(
2�

�
2 ~L1 � ~�) sin(�1 � �2) +D2D1 sin(�2�

�
2 ~L1 � ~�) sin(�2 � �1) = 0 ; 8 ~� : (A.6)

This equation requires that sin(�1 � �2) = 0, and so �2 = �1[�], which gives a real pupil
since we always take �1 = 0 as a reference. Thus, in the case of two telescopes, the one
and only way to get a centro-symmetric transmission map is to impose a real generalized
pupil.
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A.2.2 Three telescopes

As in the case of two telescopes, equation (A.5) can be satis�ed by cancelling out all the
sin(�k��l) factors, which leads to �2 = �1[�] and �3 = �1[�]. Once again, choosing �1 = 0,
we get a real entrance pupil.

But another way to satisfy this equation is to �nd particular values of ~Lk, which would
not require all the sin(�k � �l) factors to vanish. Those values of ~Lk are chosen in order
to create a linear relation between two of the sin(2�

�
( ~Lk � ~Ll) � ~�) factors, which will be the

case if two of the ~Lk � ~Ll are co-linear. In that case, the three telescopes lie on a single
line, and we can take the origin of the axes on that line. Choosing for example ~L2 = 0 and
~L1 = � ~L3 = ~L (DAC-like con�guration), the condition becomes

2D1D2 sin(
2�

�
~L � ~�) sin(�1 � �2) + 2D1D3 sin(

2�

�
2~L � ~�) sin(�1 � �3)

+2D2D3 sin(
2�

�
~L � ~�) sin(�2 � �3) = 0 ; 8 ~�

) D1D2 sin(�1 � �2) +D2D3 sin(�2 � �3) + 2D1D3 cos(
2�

�
~L � ~�) sin(�1 � �3) = 0 ; 8 ~� :

The last equation can be satis�ed with �1 = �3[�] and

D1 sin(�1 � �2) +D3 sin(�2 � �3) = 0 :

If �1 = �3 + �[2�], a possible solution is simply D1 = D3.
So, all the linear con�gurations with telescopes 1 and 3 at equal distances from telescope

2, satisfying the relations D1 = D3, �1 = 0, �3 = �, and with arbitrary D2 and �2 also
give a centro-symmetric transmission map. Since �2 can take an arbitrary value, we can
choose it in order to get a complex entrance pupil, proving that complex pupils may also
lead to centro-symmetric maps (i.e., R(�~�) = R(~�)). The necessary condition is therefore
not veri�ed for the case of three telescopes.

A.2.3 More than three telescopes

When there are more than three telescopes, we can always �nd particular values of ~Lk (k =
1; 2; : : : ; n) such that the condition (A.5) does not absolutely require all the sin(�k � �l)
to vanish. Using that trick, complex pupils giving centro-symmetric maps can once again
be found. We will not write down the long mathematical developments which lead to
those special con�gurations. Nevertheless, let us take an example with four telescopes: the
combination of two Bracewell interferometers in a square con�guration with an arbitrary
phase shift between the two Bracewell is one of those complex con�gurations that lead to
centro-symmetric maps.

A.3 Consequences

We have just proven that real entrance pupils always yield centro-symmetric maps, whereas
complex pupils generally yield asymmetric maps, but sometimes, in particular cases, centro-
symmetric maps. What are the consequences of these results?
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� When we don't use internal modulation, an asymmetric map is needed to distinguish
the planetary signal versus exozodiacal light (section 3.2.3). A complex entrance
pupil is therefore needed, and of course it cannot be one of the special cases with a
symmetric map.

� When internal modulation is used, it has been proven in section 3.2.5 that real
entrance pupils are needed for each of the sub-arrays, which will therefore have a
centro-symmetric transmission map.

The conclusion of these remarks is that the complex pupils with a centro-symmetric
map are of no interest, and should not be further investigated. On the other hand, both
real pupils and complex pupils with asymmetric maps have to be studied in detail.



Appendix B

Circular arrays with a �
�4 rejection

A systematic study of circular con�gurations with a ��4 rejection ratio (or better) is pre-
sented below. Circular arrays play an important role for the Darwinmission, because they
do not require long delay lines. As explained in section 3.1.2, a �4 starlight suppression is
needed to compensate for the huge contrast between the star and the planet.

B.1 Complex entrance pupils

In this section, we will assume that exoplanet detection is performed with a rotating
array (no internal modulation). We will explore the possibility to have an asymmetric
transmission map (which requires a complex entrance pupil, as proven in appendix A)
with a given number of telescopes distributed on a circle, and giving a ��4 rejection rate.
The necessity of an asymmetric map is proven in section 3.2.3, which is relevant if internal
modulation is not used. We will begin with 3-telescope arrays, since two telescopes are not
enough to achieve a �4 starlight suppression.

B.1.1 Three telescopes

In appendix C.1, dedicated to linear arrays, we prove that the only 3-telescope con�guration
giving a �4 starlight suppression is the DAC, which has a centro-symmetric transmission
map since its entrance pupil is real. So, three telescopes are not enough to allow secure
detection of Earth-like exoplanets versus exozodiacal light.

B.1.2 Four telescopes

Let us rewrite the conditions (3.8) for a ��4 rejection rate, assuming Lk = L for all k:

4X
k=1

Dk e
j�k = 0

4X
k=1

Dk cos(Æk � �) ej�k = 0 ; for all �.
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We will take telescope 1 as a reference for the diameters (D1 = 1), the angular distances
(Æ1 = 0) and the phase shifts (�1 = 0), so that the above equations write:

D2 e
j�2 +D3 e

j�3 +D4 e
j�4 = �1 ;

D2 cos Æ2 e
j�2 +D3 cos Æ3 e

j�3 +D4 cos Æ4 e
j�4 = �1 ;

D2 sin Æ2 e
j�2 +D3 sin Æ3 e

j�3 +D4 sin Æ4 e
j�4 = 0 :

Taking the real and imaginary parts of these equations, and letting ck = Dk cos(�k) and
sk = Dk sin(�k), we obtain a system of six equations with nine unknown parameters (ck,
sk and Æk for k = 2; 3; 4):

c2 + c3 + c4 = �1 ;
s2 + s3 + s4 = 0 ;
c2 cos Æ2 + c3 cos Æ3 + c4 cos Æ4 = �1 ;
s2 cos Æ2 + s3 cos Æ3 + s4 cos Æ4 = 0 ;
c2 sin Æ2 + c3 sin Æ3 + c4 sin Æ4 = 0 ;
s2 sin Æ2 + s3 sin Æ3 + s4 sin Æ4 = 0 :

(B.1)

Now, if the positions Æk of the telescopes are �xed, we get two linear systems of three
equations, each with three unknowns, because the equations are decoupled in ck and sk.
These two systems can be written in a matrix form:0

@ 1 1 1
cos Æ2 cos Æ3 cos Æ4
sin Æ2 sin Æ3 sin Æ4

1
A
0
@ c2

c3
c4

1
A =

0
@ �1
�1
0

1
A ; (B.2)

0
@ 1 1 1

cos Æ2 cos Æ3 cos Æ4
sin Æ2 sin Æ3 sin Æ4

1
A
0
@ s2

s3
s4

1
A =

0
@ 0

0
0

1
A : (B.3)

De�ningM , the common matrix of these two linear systems, we have two cases to examine,
depending on whether detM is zero or not.

Case detM 6= 0

In that case, there exists one and only one solution for each of the two linear systems. The
second system immediately gives the trivial solution sk = 0 for all k, so that sin�k = 0 for
all k. This implies that the phase shifts are restricted to 0[�], and so, that the generalized
entrance pupil is real (giving the GAC con�gurations). Since the phase shifts are restricted
to 0[�], asymmetric transmission maps cannot exist under these conditions.

Case detM = 0

In that case, the three equations of each linear system are not linearly independent any
more, so that an in�nity of solutions may be found for both systems: c4 and s4 can be
taken as free parameters, and each value of those parameters will produce a unique solution.
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Asymmetric transmission maps with four telescopes on a circle and a �4 on-axis suppression
could therefore be possible.

But unfortunately, detM = 0 does not correspond to any physical solution with four
telescopes. Developing the determinant gives successively:

cos Æ3 sin Æ4 � sin Æ3 cos Æ4 + cos Æ4 sin Æ2 � sin Æ4 cos Æ2 + cos Æ2 sin Æ3 � sin Æ2 cos Æ3 = 0

) sin(Æ4 � Æ3) + sin(Æ2 � Æ4) + sin(Æ3 � Æ2) = 0

) 2 sin(
Æ4 � Æ3

2
)

�
cos(

Æ4 � Æ3
2

)� cos(Æ2 � Æ3 + Æ4
2

)

�
= 0 ;

which is true if and only if

Æ4 = Æ3[2�] : impossible, because telescopes 3 and 4 would merge,

or
Æ4 � Æ3

2
= Æ2 � Æ3 + Æ4

2
[2�]) Æ4 = Æ2[2�] : impossible (same reason),

or
Æ3 � Æ4

2
= Æ2 � Æ3 + Æ4

2
[2�]) Æ3 = Æ2[2�] : impossible (same reason).

Conclusion

We have proven that con�gurations with four telescopes on a circle and a complex entrance
pupil cannot give a ��4 rejection rate. The only circular 4-telescope con�gurations with
such a rejection rate are the GACs (with a real entrance pupil by de�nition), which have a
centro-symmetric transmission map, and so are not appropriate for a distinction between
a planet and exozodiacal light.

Case of two merged telescopes

The previous conclusion does not consider one particular case, where two telescopes merge.
This is not equivalent to the 3-telescope case since two di�erent phase shifts can be applied
to a single telescope (which would be composed of the two merged telescopes). Let us see
if a new kind of nulling con�guration could be found in that case. We will take the case
Æ3 = Æ4 as an example.

With Æ3 = Æ4, the system (B.3) can be written as

s2 = �s3 � s4 ;
(cos Æ3 � cos Æ2)s3 + (cos Æ3 � cos Æ2)s4 = 0 ;
(sin Æ3 � sin Æ2)s3 + (sin Æ3 � sin Æ2)s4 = 0 :

(B.4)

Assuming Æ2 6= Æ3, this system reduces to s3 + s4 = 0 and s2 = 0, so that �2 = 0[�]. Then,
the system (B.2) is rewritten with Æ3 = Æ4:

c2 = �1� c3 � c4 ;
(cos Æ3 � cos Æ2)c3 + (cos Æ3 � cos Æ2)c4 = �1 + cos Æ2 ;
(sin Æ3 � sin Æ2)c3 + (sin Æ3 � sin Æ2)c4 = sin Æ2 :

(B.5)
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The last two equations of this system cannot be simultaneously veri�ed unless

�1 + cos Æ2
cos Æ3 � cos Æ2

=
sin Æ2

sin Æ3 � sin Æ2
: (B.6)

By means of some trigonometry relations, this equation easily gives the following condition:

tan

�
Æ2 + Æ3

2

�
= tan

�
Æ2
2

�
; (B.7)

which is satis�ed if and only if Æ3 = 0[2�]. With this result, the above system of equation
yields the condition c3+c4 = �1, so that c2 = 0. Since we have already proven that s2 = 0,
the only possible solution is D2 = 0, and telescope 2 vanishes. Thus, there remains only
one telescope at Æ1 = Æ3 = Æ4 = 0, whose output is divided into three beams, which interfere
destructively at recombination. This is not an interferometer any more! Moreover, it can
be proven that all sources are cancelled by this process: the o�-axis planet as well as the
on-axis star. Note that the case where Æ2 = Æ3, which has not been considered, would not
give any other solution.

This kind of �single aperture interferometer� is used with the Achromatic Interfero
Coronagraph (see section 2.3.2), where two beams coming from a single telescope are
phase-shifted and rotated before recombination. The 180Æ rotation of one beam, achieved
by a cat's eye system, produces two symmetrical images of an o�-axis source, while the
on-axis star is perfectly cancelled.

B.1.3 Five telescopes

We prove below that, if the angular positions of the �ve telescopes on a circle are given,
we may �nd a �double in�nity� of solutions with a complex pupil and a ��4 rejection rate,
which means that there remains two free parameters when the positions are �xed.

Let us rewrite the set of equations (B.1) in the case of �ve telescopes on a circle, with
the same conventions (D1 = 1, Æ1 = 0, �1 = 0):

c2 + c3 + c4 + c5 = �1 ;
s2 + s3 + s4 + s5 = 0 ;
c2 cos Æ2 + c3 cos Æ3 + c4 cos Æ4 + c5 cos Æ5 = �1 ;
s2 cos Æ2 + s3 cos Æ3 + s4 cos Æ4 + s5 cos Æ5 = 0 ;
c2 sin Æ2 + c3 sin Æ3 + c4 sin Æ4 + c5 sin Æ5 = 0 ;
s2 sin Æ2 + s3 sin Æ3 + s4 sin Æ4 + s5 sin Æ5 = 0 :

(B.8)

If the positions Æk of the telescopes are �xed, we get a set of 6 linear equations with 8
unknown parameters (ck and sk for k = 2; 3; 4; 5). We can take c5 and s5 as free parameters,
and write as before:0

@ 1 1 1
cos Æ2 cos Æ3 cos Æ4
sin Æ2 sin Æ3 sin Æ4

1
A
0
@ c2

c3
c4

1
A =

0
@ �1� c5
�1� c5 cos Æ5
�c5 sin Æ5

1
A ; (B.9)

0
@ 1 1 1

cos Æ2 cos Æ3 cos Æ4
sin Æ2 sin Æ3 sin Æ4

1
A
0
@ s2

s3
s4

1
A =

0
@ �s5
�s5 cos Æ5
�s5 sin Æ5

1
A : (B.10)
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We have already proved that detM = 0 does not have any physical meaning, and
so we can restrict ourselves to the case detM 6= 0. In that case, for each value of c5
and s5, i.e., of D5 and �5, there exists one and only one solution for each of the two
linear systems, giving a unique solution for the diameters and phase shifts of the three
remaining telescopes. Consequently, asymmetric transmission maps can be obtained with
�ve telescopes on a circle, and with a ��4 rejection rate. Five telescopes arrays are therefore
well suited for exoplanet detection with a good rejection of exozodiacal light (once again,
we do not consider internal modulation here: the only modulation comes from the rotation
of the array).

B.2 Real entrance pupils

Let us now consider the case of real generalized pupils. This kind of pupils is used with
internal modulation, where they are recombined pairwise with a variable phase shift.

B.2.1 Three telescopes

Con�gurations with three telescopes on a circle cannot result in a ��4 rejection rate, as
proven in appendix C.

B.2.2 Four telescopes

Using the developments of paragraph B.1.2, we can prove an interesting result concerning
the GACs, which correspond to the case detM 6= 0 as discussed above. We have seen that,
under this condition, a unique solution exists for the ck = Dk cos�k and that the phase
shifts are restricted to �k = 0[�], which gives a real entrance pupil. So, for each set of Æk
(position of the telescopes), there exists one and only one GAC con�guration (real circular
con�guration with a ��4 rejection rate), de�ned by the values of Dk and �k (�k = 0 if ck
is positive, �k = � if ck is negative).

B.2.3 Five telescopes

We can use the results obtained in the complex pupil case, with sk = 0 since all �k are
restricted to integer multiples of �. Taking c5 as a free parameter, the linear system B.9
remains valid: 0

@ 1 1 1
cos Æ2 cos Æ3 cos Æ4
sin Æ2 sin Æ3 sin Æ4

1
A
0
@ c2

c3
c4

1
A =

0
@ �1� c5
�1� c5 cos Æ5
�c5 sin Æ5

1
A : (B.11)

Since detM 6= 0, there exists a unique solution for each set of Æk and for each c5. So,
for each position of the telescopes, an in�nity of real con�gurations can achieve the ��4

rejection rate.
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Now, a new question arises: is it possible to get a �6 on-axis extinction with �ve
telescopes on a circle? Unfortunately, the answer is negative, as proven below. Let us
write the additional condition for a ��6 rejection:

5X
k=1

Dk cos2(Æk � �) ej�k = 0 ; for all �. (B.12)

Using some well-known trigonometry formulae, this equation leads to

5X
k=1

ck cos(2Æk) = 0 , and
5X

k=1

ck sin(2Æk) = 0 ; (B.13)

giving a new system of �ve equations with �ve unknowns (in order to get a square matrix,
we will not impose c1 = 1 this time):0

BBBB@
1 1 1 1 1

cos Æ1 cos Æ2 cos Æ3 cos Æ4 cos Æ5
sin Æ1 sin Æ2 sin Æ3 sin Æ4 sin Æ5
cos 2Æ1 cos 2Æ2 cos 2Æ3 cos 2Æ4 cos 2Æ5
sin 2Æ1 sin 2Æ2 sin 2Æ3 sin 2Æ4 sin 2Æ5

1
CCCCA

0
BBBB@

c1
c2
c3
c4
c5

1
CCCCA =

0
BBBB@

0
0
0
0
0

1
CCCCA : (B.14)

De�ning M as the square matrix of this system, we immediately see that detM 6= 0 gives
the unique solution ck = 0 for all k, which implies that Dk = 0 (impossible). So, let us see
the conditions to have detM = 0. Taking Æ1 = 0 as a reference, the determinant writes:

detM = 256 sin( Æ2
2
) sin( Æ3

2
) sin( Æ4

2
) sin( Æ5

2
) sin( Æ2�Æ3

2
) sin( Æ2�Æ4

2
)

sin( Æ2�Æ5
2

) sin( Æ3�Æ4
2

) sin( Æ3�Æ5
2

) sin( Æ4�Æ5
2

) :

For this expression to vanish, two of the Æk must be equal to within a whole multiple of 2�
(remember that Æ1 = 0); so that two telescopes merge, which is not possible. Therefore, a
circular con�guration with �ve telescopes cannot give a ��6 rejection rate. This holds true
for complex pupils, since then we are faced with the same matrix M in the complex case.
The only di�erence is the presence of two decoupled systems, one for the ck and the other
for the sk.



Appendix C

Linear arrays with a �
�4 rejection

This time, we will not separate the developments for complex and real pupils any more.
A general study of linear arrays is done with arbitrary phase shifts, and real pupils are
considered as a special case of complex ones. Once again, we will restrict the study to
con�guration with a ��4 rejection rate or better.

Linear con�gurations are particular because long delays lines can generally be avoided,
if the distances between the telescopes are equal.

C.1 Three telescopes

It this �rst section, we will prove that the DAC family (Degenerate Angel Cross, linear array
de�ned in section 3.2.2)) is the only three-telescope con�guration giving a ��4 rejection
rate, by showing that non-linear con�gurations cannot result in a ��4 rejection rate, and
that the only possible linear array is a DAC.

Consider three telescopes in any triangular shape (non-linear con�guration). We can
always draw a circle de�ned by the centers of the three telescopes (�gure C.1).

�


 �


 �


 �

� �

� �

� �

� � � �

	 �

	 �

	 �

Figure C.1: Three non-aligned telescopes can always be inscribed on a circle (center O).

Taking the center O of the circle as the origin of the frame, and the direction of telescope
number 1 as an angular reference (so that Æ1 = 0), we write the conditions (3.8) for a ��4
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rejection rate:

3X
k=1

Dk e
j�k = 0 ;

3X
k=1

Dk Lk cos(Æk � �) ej�k = 0 ; for all �.

In a circular con�guration, all the telescopes are at equal distances from the origin (Lk = L
for all k). If we develop the cosines in the second condition and use the fact that this
equation must be true for all �, we get a set a three conditions to satisfy:

D1 e
j�1 +D2 e

j�2 +D3 e
j�3 = 0 ; (C.1)

D1 e
j�1 +D2 cos Æ2 e

j�2 +D3 cos Æ3 e
j�3 = 0 ; (C.2)

D2 sin Æ2 e
j�2 +D3 sin Æ3 e

j�3 = 0 ; (C.3)

because cos Æ1 = 1 and sin Æ1 = 0.
Then, we take �2 as the reference for the phase shifts, choosing �2 = 0. The equa-

tion (C.3) cannot be satis�ed unless �3 is a whole multiple of �, because the second term
must also be real. We can always choose the telescope number 1 so that sin Æ2 and sin Æ3
are of opposite sign (see �gure C.1). It that case, �3 is restricted to whole multiple of 2�
because the two terms must be of di�erent signs to cancel out (D2 and D3 are positive
quantities). As the last two terms of equation (C.1) are both real and positive, the �rst
term must be a negative real number, giving �1 = � to within a whole multiple of 2�. Let
us rewrite the �rst two equations with these values of �k:

�D1 +D2 +D3 = 0 ;

�D1 +D2 cos Æ2 +D3 cos Æ3 = 0 :

Those two equations cannot be simultaneously satis�ed unless Æ2 = Æ3 = 0. Thus, the
three telescopes must be at the same place, which is absurd. We conclude that non-linear
con�gurations cannot give a ��4 rejection rate.

The last thing to do is to �nd the conditions for a linear array to be a DAC. Letting
L2 = 0 in the nulling equation, with Æ3 = 0 and Æ1 = � (conditions for a linear array with
the origin O of the frame at the center of telescope 2), we obtain:

D1 e
j�1 +D2 e

j�2 +D3 e
j�3 = 0 ; (C.4)

�D1L1 e
j�1 +D3L3 e

j�3 = 0 : (C.5)

Once again, we choose a reference phase shift �1 = 0, so that equation (C.5) gives �3 = 0
and D1L1 = D3L3. Replacing those values in equation (C.4) yields �2 = � and D2 =
D1+D3, which is the de�nition of a DAC. Some example of DACs are proposed in �gure C.2.
Note that the DACs always have a real entrance pupil.
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Figure C.2: Some examples of DACs, with their generalized entrance pupil.

C.2 Four telescopes

C.2.1 With a �
�4 rejection rate

For the sake of simplicity, we adopt the following conventions (see �gure C.3): L1 = 0
(origin of the L axis), and telescope 1 on the left end of the array, so that Æk = 0 (8k).
The Lk are positive quantities as usual. Under these assumptions, the conditions for a ��4

rejection rate read:

D1 e
j�1 +D2 e

j�2 +D3 e
j�3 +D4 e

j�4 = 0 ; (C.6)

D2L2 e
j�2 +D3L3 e

j�3 +D4L4 e
j�4 = 0 : (C.7)

Since we have many more unknowns than equations, we will take the positions Lk of the
telescopes as �xed parameters. The second equation gives a complex relation (i.e., two
real relations) between telescopes 2, 3 and 4. The �rst equation allows us to deduce the
characteristics of telescope 1 when the other three telescopes are known.

�

� � + � � � � � � 1

 � !  � !  1 ! � !

Figure C.3: Conventions for the 4-telescope linear arrays.

Complex con�gurations

Equation (C.7) splits into two real relations:

D2L2 cos �2 +D3L3 cos�3 +D4L4 cos�4 = 0

D2L2 sin�2 +D3L3 sin�3 +D4L4 sin�4 = 0 :

If the phase shifts �k (k = 2; 3; 4) are �xed, there remains two linear equations with
three unknowns (D2, D3 and D4). Since we can always �x D2 = 1 as a reference, there
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are in fact only two unknown parameters, which can be deduced by solving the system.
Equation (C.6) is then split into two real relations, which easily give D1 and �1. So, for a
given geometry, there exists a double in�nity of linear con�gurations with a ��4 rejection
rate, depending on the relative values of �3 and �4 with respect to the �2 = 0 reference.

Real con�gurations

When the �k are restricted to whole multiples of �, equations (C.6) and (C.7) are reduced
to two real relations. Letting ck = Dk cos(�k), we get

c1 + c2 + c3 + c4 = 0 ;

c2L2 + c3L3 + c4L4 = 0 :

Taking c2 = 1 as a reference and c3 as a free parameter, the second equation gives c4
and then the �rst gives c1. Thus, for a given linear geometry, there is an in�nity of real
con�gurations with a �4 starlight suppression, depending on the value of c3 with respect
to c2.

C.2.2 With a �
�6 rejection rate

In addition to equations (C.6) and (C.7), the following complex relation must also be
satis�ed (see equation 3.8):

D2L
2
2 e

j�2 +D3L
2
3 e

j�3 +D4L
2
4 e

j�4 = 0 : (C.8)

Letting ck = Dk cos(�k) and sk = Dk sin(�k), these three equations are equivalent to a
system of six real equations:

c1 + c2 + c3 + c4 = 0 ;

s1 + s2 + s3 + s4 = 0 ;

c2L2 + c3L3 + c4L4 = 0 ;

s2L2 + s3L3 + s4L4 = 0 ;

c2L
2
2 + c3L

2
3 + c4L

2
4 = 0 ;

s2L
2
2 + s3L

2
3 + s4L

2
4 = 0 :

Now, we can take �1 = 0 as a phase reference, so that s1 = 0. In that case, the three
equations involving the sk variables immediately give s2 = s3 = s4 = 0, and thus a real
entrance pupil. Then, choosing c1 = 1, there remains three equations with three unknowns
(c2, c3 and c4), which give a unique solution for the entrance pupil. So, for each given
linear geometry, there exits one and only one con�guration with a �6 on-axis extinction,
and this con�guration has a real entrance pupil.

A particular subset of this family consists in the superposition of two Bracewell interfer-
ometers with di�erent spacings, whose outputs are combined with 180Æ achromatic phase
di�erence. This con�guration has been proposed by Angel and Woolf [3], and constitutes
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the current baseline for the Terrestrial Planet Finder mission (TPF). This set of con�gura-
tions is dubbed OASES (Outpost for Analysis and Spectroscopic of Exo Systems, see [58]
for history). Figure 3.19 illustrates the interesting case where the telescopes are at equal
distances of each other. In that case, the telescope sizes are in a 1:3:3:1 ratio.
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Arbitrary arrays with a �
�4 rejection

It is a tedious task to study arbitrary arrays in an analytical way, because one must take
into account a very large number of free parameters: the telescopes positions (Lk, Æk),
diameters Dk and phase shifts �k. Moreover, when more than four telescopes are used, a
third order recombination scheme has to be considered, which increases the recombination
losses. For those reasons, we will restrict the study to 4-telescope arrays.

Using the same notations as in appendix B and introducing the Lk parameters, the
nulling equations read

4X
k=1

Dk e
j�k = 0

4X
k=1

Dk Lk cos(Æk � �) ej�k = 0 ; for all �.

De�ning ck = Dk cos�k and sk = Dk sin�k as usual, and taking telescope 1 as a reference
(L1 = D1 = 1, Æ1 = �1 = 0), the nulling equations can be written in the following matrix
form: 0

@ 1 1 1
L2 cos Æ2 L3 cos Æ3 L4 cos Æ4
L2 sin Æ2 L3 sin Æ3 L4 sin Æ4

1
A
0
@ c2

c3
c4

1
A =

0
@ �1
�1
0

1
A ; (D.1)

0
@ 1 1 1

L2 cos Æ2 L3 cos Æ3 L4 cos Æ4
L2 sin Æ2 L3 sin Æ3 L4 sin Æ4

1
A
0
@ s2

s3
s4

1
A =

0
@ 0

0
0

1
A : (D.2)

As in section B.1.2, if M represents the common matrix of these two linear systems, the
case detM 6= 0 leads to a unique real con�guration (since all sk = 0, so that all �k = 0[�]).
But what we are looking for is a complex con�guration, with which inherent modulation
can be used (see section 4.4.4). Developing the condition detM = 0 leads to one relation
between the free parameters:

L4 =
L2L3 sin(Æ2 � Æ3)

L2 sin(Æ2 � Æ4) + L3 sin(Æ3 � Æ4)
: (D.3)
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In that case, the linear system D.2 gives an in�nity of solutions for the sk parameters,
depending on the arbitrary value of s2. On the other hand, the linear system D.1 gives
an in�nity of solutions if and only if the right-hand vector is a linear combination of the
matrix columns. This is the case if the determinant of0

@ 1 1 �1
L2 cos Æ2 L3 cos Æ3 �1
L2 sin Æ2 L3 sin Æ3 0

1
A (D.4)

vanishes. This condition leads to another relation between the free parameters:

L3 =
L2 sin Æ2

L2 sin(Æ2 � Æ3) + sin Æ3
: (D.5)

When this condition is satis�ed, the parameters c3 and c4 can be expressed as a function
of the arbitrary value of c2.

All in all, only six free parameters remain: the angular positions Æ2, Æ3, Æ4, and the
characteristics of telescope 2 (L2, c2 and s2, or equivalently, L2, D2 and �2). These six
parameters must be �xed in order to de�ne a unique complex con�guration. Note that we
can always �nd two complex con�gurations with the same geometrical arrangement, by
only changing the signs of the phase shifts.
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